INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563

elSSN 2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 02 (2024)

DISTRIBUTION CHROMATOGRAPHY

Mamadjonova Xakima G'ulomjonovna

Andijan State Medical Institute

Abstract: Chromatography alludes to a different arrangement of research facility methods used to isolate the parts or analytes inside complex blends. These parts can change broadly in properties like size, charge, or fondness for different solvents or fixed stages. Because of the intricacy of some certifiable examples, isolating and dissecting individual parts can give priceless data and experiences. Circulation chromatography is a strong however underutilized chromatographic technique that takes advantage of contrasts in segment or conveyance conduct between stages. This article will investigate the standards and uses of conveyance chromatography as a logical detachment method.

Keywords: Arrangements, analysis, data, chromatography, isolations, detachments, combinations.

Introduction: Partition chromatography is based on the process of constant redistribution of substances between two (mobile and stationary) phases. If the stationary phase is relatively polar, an increase in the partition coefficient leads to a decrease in the displacement of the substance. If the mobile phase is liquid, the chromatographic separation process is carried out on column, paper and thin layer sorbents. Paper partition chromatography is based on the difference in partition coefficients of substances between two immiscible liquids. In this case, one of the liquids spreads slowly across the paper (mobile phase), and the other serves as a stationary phase. The mobile phase dissolves and displaces the test compound along the paper.

In the process of chromatography, the process of redistribution of the substance between the mobile and stationary phases takes place many times. The speed of movement of a substance on paper depends on its distribution coefficient. The distribution coefficient depends on how the tested substance dissolves in two phases and is determined by the ratio of the substance's concentration in the stationary phase S1 to its concentration in the mobile phase S2.

If a mixture of 2 substances is dropped on the paper, and the distribution coefficient of one of them is higher than that of the other, then during the chromatography process, the first substance moves slower on the paper than the second, and as a result, they occupy two different places in the chromatogram. The distribution of substances along the paper is determined by their Rt value.

Rt is the ratio of the distance from the starting line to the center of the spot formed by the substance in the chromatogram (a) and the distance from the starting line to the front line of the solvent mixture (b):

Rt = a/b

The R value of substances depends on various factors: the nature of the solvent, the purity of the composition, the amount of the substance, the temperature of chromatography, the type of paper, etc. Sometimes Rs value is used instead of Rt. Rs is the distance from the start line to the center of the test spot formed in the chromatogram — a and the distance from the start line to the center of the spot of the standard substance — a0 or the ratio of the Rf values of the test substance and the standard substance. The value of Rs should be between 0.5 and 2. Chromatography is carried out on special papers "for chromatography". They are different: fast, slow, medium and filter papers.

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563

elSSN 2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 02 (2024)

Papers are sometimes cleaned by a special treatment before chromatography, but often this is not required. The solutions used for chromatography must be pure and do not react with each other or with the substance being examined. Because paper is hydrophilic, a mixture of relatively polar solvents is often used as the stationary phase. If the paper has been specially treated to make it hydrophobic before chromatography, a less polar solvent is used.

The choice of solvents depends on the characteristics of the substances to be detected, for strongly polar substances, a mixture of solvents with a stationary phase containing water, and for moderately polar substances, organic solvents with a high boiling point (formamide, propylene glycol, acetonitrile, etc.) is used as a stationary phase.

In mixtures with the same stationary phase, increasing the polarity of the mobile phase leads to an acceleration of the displacement of the substance being chromatographed. The following solvent mixtures are often used to separate basic substances:

- 1. a) N-butyl alcohol buffer solution pH=3.0;
- b) N-butyl alcohol buffer solution pH = 5.0;
- d) N-butyl alcohol buffer solution pH = 6.5;
- e) N-butyl alcohol-buffer solution pH =7.5;
- 2. a) formamide + 1% acetic acid/chloroform
- b) methyl alcohol-5% ammonia-benzene 2:1:1;
- d) N-butyl alcohol-acetic acid-water 4:1:5;
- e) formamide/chloroform;
- t) formamide/chloroform-benzene 1:1;
- g) formamide/benzene;
- h) formamide/benzene-gasoline 1:1.

For lower aliphatic acids, a mixture of paraffin or petroleum jelly - 90% acetic acid is used. A mixture of all the solvents mentioned above can be used in the separation of steroids. For example, formamide for cortisone acetate, prednisone, prednisolone is used.

Paper chromatography is partitioned into the accompanying sorts as indicated by the technique for activity: descending, vertically, roundabout. In base up chromatography, the dissolvable and the solute move start to finish. In base up chromatography, running against the norm, it moves from base to top.

In round (spiral) chromatography, the dissolvable and the broke down substance in it move radially from the focal point of the paper to the edge. Notwithstanding the previously mentioned techniques, there are additionally sorts of converse and two-layered chromatography. In two-layered chromatography, the detachment of substances is two-way, for example whenever it first is one way, and the second time it is done the other way to the past one.

In re-chromatography, the detachment cycle is twice aside

INTERNATIONAL MULTIDISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563

elSSN 2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 02 (2024)

is continued relying upon Chromatography is done in all around fixed glass holders (containers, chambers, and so forth.).

In descending chromatography, the versatile stage is put inside a glass chamber in a holder intended to be put on a gadget of a specific level. In vertical chromatography, the vessel containing the portable stage is put at the lower part of the chamber.

A gadget for fixing the chromatography paper is joined to the top. In turn chromatography, a desiccator or Petri dish is utilized. In the event that water is utilized as the fixed stage, it is filled the chamber, another high-temperature kettle. on the off chance that there is a non-unstable dissolvable (formamide), the paper is doused with a weaken arrangement of this dissolvable, and the portable stage is set in the holder. To completely immerse the chambers with the dissolvable blend, channel paper is frequently appended to the edges of the chamber so it contacts the dissolvable.

Conclusion

In conclusion, conveyance chromatography uses the essential parceling conduct of analytes to accomplish high-goal divisions of mind-boggling test combinations. Its basic yet vigorous two-fluid stage configuration grants solid detachment capacities across a wide scope of compound classes and properties. These benefits, joined with adaptability of activity from scientific to creation scales, have prompted wide reception of circulation chromatography methods across different application areas including unpredictable genuine examples. However less regularly talked about than other chromatographic techniques, dispersion chromatography remains as a viable scientific answer for some perplexing detachment challenges. Further turn of events and use of this strong strategy can be anticipated.

References:

- 1. Analysis of dosage forms manufactured in pharmacies /Kuleshova M.I., Guseva L.N., Sivitskaya O.K./, 2nd ed., revised. and additional, M., Medicine, 1989.
- 2. Belikov V.G. Pharmaceutical chemistry, M. Higher school.1985.
- 3. State Pharmacopoeia of the USSR X l-edition, issue 1. Are common methods of analysis, M., Medicine, 1987.
- 4. State Pharmacopoeia of the USSR X l-edition, issue 2. Are common methods of analysis. Medicinal plant raw materials, M., Medicine 1989.
- 5. State Pharmacopoeia S S S R X-edition, M..Medicine, 1968.
- 6. Ibodov A.Yu. Pharmacist Kimyo 1, 2-k.ism, Tashkent, Abu Ali ibn Si no, 1996.
- 7. Kirchner Yu. Thin layer chromatography, 2 vols. Transl. With English, M., Mir, 1981.