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Abstract: This article discusses the main aspects of the formulation and solution of the Neumann
problem for partial differential equations. The features of this boundary value problem, methods
for its solution, as well as the necessary conditions for solvability are described. Particular
attention is paid to the solution of the interior and exterior Neumann problems for a circular
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Introduction.

Partial differential equations are a powerful tool for modeling and describing a wide range
of physics, engineering, and mathematics problems. One of the important classes of such
equations is the Neumann problem, which considers the boundary conditions associated with the
normal derivative of the solution. In this introduction we will consider the main aspects of the
formulation and solution of the Neumann problem, as well as some of its generalizations and
applications.

1. Statement of the Neumann problem.The Neumann problem is one of the fundamental
boundary value problems for partial differential equations. Unlike the Dirichlet problem, where
the value of the desired function is specified at the boundary of the domain, in the Neumann
problem the value of the normal derivative of this function is specified at the boundary. Thus, the
Neumann problem is formulated as follows: find a function u(x,y) that satisfies the differential
equation in some domain Ω and the Neumann boundary condition on the boundary ∂Ω of this
domain.

2. Solution of the internal Neumann problem.Various methods are used to solve the
internal Neumann problem, including the separation of variables method, the integral equation
method, and the Green's function method. These methods make it possible to obtain explicit
expressions for solving the Neumann problem in various geometric configurations, such as a
rectangle, circle, sphere, etc. Particularly important is the construction of Green's functions, which
play a key role in representing the solution to the Neumann problem in the form of an integral
equation.

3. Internal Neumann problem in space.The Neumann problem can be generalized to three-
dimensional space, where instead of a flat region Ω, a three-dimensional region V is considered.
In this case, the Neumann boundary condition is specified on the surface ∂V bounding the region
V. Solving the internal Neumann problem in space requires the use of a more complex
mathematical apparatus, including himself the theory of potentials, the theory of integral
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equations and methods of functional analysis. However, the basic principles for solving the
internal Neumann problem in space are similar to the two-dimensional case.

4. Necessary conditions for the solvability of the internal problem.Neumann In order for
the internal Neumann problem to have a solution, certain conditions must be met. These
conditions are related to the consistency of the boundary data and the properties of the differential
operator describing the equation in the domain. For example, for elliptic equations, a necessary
condition is the fulfillment of the Neumann compatibility condition, which imposes restrictions on
the boundary data. In addition, in the case of nonsmooth boundaries or nonsmooth coefficients of
the equation, additional restrictions on the solvability of the Neumann problem may arise.

5. Internal and external Neumann problems for a circle.One of the important examples of
solving the Neumann problem is the case of a circular region. For a circle, one can construct
explicit solutions for both the internal and external Neumann problems. The solution to the
internal Neumann problem for a circle is based on representing the solution in the form of a
Fourier series in polar coordinates. Solving the external Neumann problem for a circle requires
the use of potential theory and the construction of a fundamental solution to the Laplace equation
outside the circle. These solutions are widely used in various fields such as electrostatics, fluid
dynamics and elasticity theory.

Statement of the Neumann problem.

With regard to the type of areas bounded by surfaces, we will distinguish the following
cases: �

A case that we will call ordinary. In this case, there is one surface bounding a solid body (Fig. 1).

Figure 1. Surface bounding a solid body.
Of the two regions delimited by ​ ​ ​ ​ ​ , we denote by ​ ​ ​ ​ ​ the outer region

containing the point at infinity, and by ​ ​ ​ ​ � eD iD 一 inner area. The normal

​ ​ ​ ​ to the surface ​ ​ ​ ​ will always be directed to the area ​ ​ ​ ​ ​ � � eD .

The case in which, as shown in Fig. 2, there are several internal boundaries.
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Figure 3. ​ Single area,
defined by all
boundaries and containing

point at infinity.

The normal is always considered to be directed at the set of boundaries;
​ ​ � �� ; � � 1 , � 2 , …, � � 一 boundaries of individual bodies. We will always assume
that all boundaries satisfy the Lyapunov conditions.

Problem A. Find a function V that is harmonic inside the domain and satisfies the
condition ��

idV f
dn
=   in any point � , 1

where �一 given function, continuous on � .

This is how the internal Neumann problem is formulated. Find a function that is internally
harmonic and satisfies the condition� ��

edV f
dn

= in any point � . 2

This is Neumann's external task.
It is easy to verify that in some cases for there exist nonzero solutions to the Neumann

problem. Indeed, in the usual cases, a function equal to any constant in is harmonic and satisfies
the condition on the boundary:� = 0 � � �� ��

0idU
dn

= ​ ​ 1'

In this case, the same condition is satisfied by a function that takes arbitrary constant
values ​ ​ inside each of the surfaces. In the case of a function taking arbitrary constant values
​ ​ inside each of the surfaces and equal to zero outside, it is harmonic at and satisfies on the
boundary the condition: � � � 1 , …, � � � � � 1 , …, � � ) � 0 ��
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0edU
dn

= . 2'

If a function that is harmonic inside [or in the case of] is a solution to the Neumann
problem, then obviously it is a solution to the same Neumann problem. It can be shown that this
limits the uncertainty in solving the Neumann problem. To do this, it is enough to
show:� �� � + �

​ ​ ​ A function that is harmonic inside a finite connected region is equal to a constant
if its normal derivative is zero at the boundary of the region;1∘.

2∘. ​ ​ ​ A function that is harmonic inside an infinite connected domain with a finite
boundary is equal to zero if its normal derivative is equal to zero.

Notes. For the case of ​ , solving an external problem can be replaced by solving internal
problems and one external one. in the same way, in the case of E, the solution of internal
problems.�

Solution of the inner Neumann problem

An ordinary case.Let us note, first of all, that when following the internal Neumann
problem, we cannot arbitrarily define the function Taking into account that the constant is a
harmonic function in �� ​ ​ ​ ​ ​ ​ ​ , that �.

0i

S

dV ds
dn

= (3)

It follows that, given the condition

idV f
dn

= (4)

equality (4) must also hold. So, condition (4) is a necessary condition for the possibility of this
task. If the condition is met, the number cannot be a pole of a meromorphic function� = 1

21
0 1 2

1

( ,0) ...,
( )

D
D
zm r zr z r
z

(0) = = + + + (5)

in which

1

10 0
0 1 12

10( )

cos( )1,..., (1) .
2n n

S

r Nf d
r

r r r s
p -= = - (5')

A number cannot also be a pole of a function.� = 1

1

21
1 2 3

10( )

(1)1 ...,
2 S

dW V V V
r

m s z z
p

= - = + + + Where
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1 1

1 1 1

10 10( ) ( )

(1)1 1
2 2

k k
k

S S

d dV dV
r dn r

r s s
p p

-= - = -

Functions do not have poles, enclosed in the interval about
t​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ and cannot be their pole; therefore, we can substitute in the
value ​ ​ ​ ​ ​ ​ ​ ​ We find � =− 1� =+ 1; � =− 1� = 1.

1 2 3 ...,W V V V= + + + (4)

moreover,

.idW f
dn

= -

So, the solution to the problem is determined by the following:

1 2 3 ...,V V V V= - - - - (4' ​ ​ ​ ​ ​ ​ ​ ​ ),

Based on the uniform convergence of the series

1 0 1 2 ....m r r r(0) = - + + (5)

on​ ​ ​ ​ ​ , we have: �

1

1 1

10( )

(0)1
2 S

dV
r

m s
p

= - (6)

Thus, ​ ​ ​ ​ ​ ​ does have a normal derivative satisfying the condition�

idV f
dn

= (7)

for the function represents the solution of the equation at ​ ​ ​ ​ ​ Note that the constant is a
harmonic function in​ ​ ​ ​ ​ , the normal derivative of which is not zero; We can, therefore,
when solving an internal problem, add a derivative constant to the found function. This remark is
in complete agreement with the theorems proved above. For each solution of the equation at
​ ​ ​ ​ ​ it is possible; this operation has the consequence of adding to ​ ​ ​ ​ ​ some
constant amount. Case​ ​ ​ ​ . In the case of ​ ​ ​ ​ ​ , as in the ordinary case, fulfillment is
a necessary condition for the possibility of an internal task. The reasoning carried out above for
the ordinary case remains valid for the granular case. But in case (J) the function can admit two
poles: ​ ​ ​ ​ and ​ ​ ​ ​ ​ When the condition is met, only the pole disappears. We cannot
find the value of the function by substituting unlikely, since the radius of convergence of this
series is equal to one. Multiplying the function by ​ ​ ​ ​ ​ ​ ​ we get:� = 1. � � . � =
1� =− 1; � = 1. � = �1 + �;

2 1

1 2 1 3 2 1(1 ) ( ) ( ) ... ( ) ...
nr r r

n nW V V V V V V Vz
-

-+ = + + + + + + + + (8)
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Since a simple pole of a function, insofar as the value can no longer be a pole of a function,
given that it is also not a pole of this function, we conclude that the radius of convergence of the
last series is greater than one and that it is therefore possible to substitute a value into it
​ ​ ​ ​ We arrive at the formula� = 1.

1 2 1 3 2 1
1 ( ) ( ) ... ( ) ...
2 n nW V V V V V V V -= + + + + + + + + (9)

The required solution is obtained in the form of a series

1 2 1 3 2 1
1 ( ) ( ) ... ( ) ...
2 n nW V V V V V V V -= - + + + + + + + + (10)

As in the ordinary case, it is possible to verify that the potential is indeed a simple layer
and, therefore, admits a normal derivative that satisfies the conditions of the problem. The above
remark regarding the most general solution to the problem remains valid: to obtain this solution,
an arbitrary constant must be added to the found function. Case ​ ​ ​ ​ In case ​ ​ ​ ​ you
can apply formula (18) to each area limited by the surface ​ ​ ​ ​ It follows that the internal
Neumann problem is possible only if ​ ​ ​ ​ the conditions� . � � 7

( )( )

0 ( 1,2,..., ).
lS

fd l ks = = 11

If these​ ​ ​ conditions are satisfied, then​ ​ ​ cannot be a pole for functions (9) and
(11). In the case under consideration,​ ,​ ​ ​ for them there is also no pole, and they do not
have poles​ ​ and​ ​ So, the radius of convergence of the series is greater than unity, the total
in it​ ​ , we have:� � = 1

1 2 3 ...,W V V V= + + + (12)

The solution to the internal Neumann problem is obtained in the form of a series

1 2 3 ...,V V V V= - - - - 13 ​ ​ ​ ​

We noticed that the study of this case could be replaced by a study of Neumann's internal
problems. However, a function that would determine a solution for a region bounded by
​ ​ ​ ​ ​ would only be relevant fork S l points inside this region, whereas the solution we
just found gives the desired function in the form of one single series, suitable for all internal areas.
To the solution found, I can add a function that remains constant in each of the areas bounded by
surfaces, but whose value changes when moving from one area to another. This is in agreement
with the lemma for the case when adding to the solution of a homogeneous equation, we only add
constants that have the properties indicated above. Let us make a small remark about the
connection between problems A and B. The condition is obtained as a necessary and sufficient
condition for the solvability of problem B. Consequently, it is also a sufficient condition for the
solvability of problem A. Is it necessary? Let us show that this is so. To be specific, let's consider
an ordinary case. Let us assume that the harmonic function inside at the boundary satisfies the
condition, and� � � � �� �
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( )( )

, 0.
lS

fd сS cs = (14)

Then the function satisfies the condition , therefore, there is a potential of a simple layer
such that Then the internally harmonic function �1 = �一�� ���

��
= �1. �� � = � 一 � at the

boundary satisfies the condition �

idW c
dn

= . (15)

If then this means that the function decreases if it moves along the normal from the boundary
point and, therefore, the minimum point cannot be equal to the region, which contradicts the main
property of the harmonic function. The same is impossible. This proves the necessity of condition
(39) for the solvability of Problem A. It also follows that any solution to Problem A can be
represented by the potential of a simple layer, and thus the equivalence of Problems A and B is
proven.� > 0 � �� , � < 0

Internal Neumann problem in space.

A function is called a solution to the internal Neumann problem if:� �, �, �

• 1 ( )U C
-

W (16)

• 2 ( )U C W
• 0, ( , , )U x y z= W

•
( , , ) ( , , )

( , , )

U x y z x y z
n
x y z

y¶
=

¶

The Theorem of uniqueness.

Let the functions ( , , )iU x y z , are such that:� = 1,2

• 1 ( )iU C
-

W (17)

• 2 ( )iU C W

• 0, ( , , )iU x y z= W

•
( , , ) ( , , )

( , , )

iU x y z x y z
n
x y z

y
¶

=
¶

Then we get the following:

1 2( , , ) ( , , )U x y z U x y z const- =
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Proof :
The difference in functions is seen:

1 2( , , ) ( , , ) ( , , )U x y z U x y z U x y z= -

• 1 ( )U C
-

W

• 2 ( )U C W

0, ( , , )U x y z= W

( , , ) ( , , )

( , , )

U x y z x y z
n
x y z

y¶
=

¶

Green's first formula is used:

22 2

( )

( )

0

0

dU d U d gradU grad d
dn
dUU Ud U d gradU gradU d
dn

U U U d
x y z

U U U в
x y z

nn t s n t

t s t

t

W S W

W S W

W

= -

= -

¶ ¶ ¶
+ + =

¶ ¶ ¶

¶ ¶ ¶
= = = W

¶ ¶ ¶

(18)

A uniqueness theorem for the interior Neumann problem was proved.
Necessary conditions for the solvability of the internal Neumann problem.

Figure 4. Area limited by surfaceS and
_

S

RegionW limited by surfaceS .Function ( , , )U x y z harmonic in the areaW .

_

0U d
n

s
S

¶
=

¶ (19)

_

0,U d
n

s
S

¶
= ®

¶
S S

_

S -an arbitrary surface lying in the regionW .
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0pdy s
S

= (20)

Internal and external Neumann problems for a circle.

Obviously, in the case of a circle of radius ​ with the center at the origin of the coordinates, the

external normal derivative is�
R R

u u
n r rr= =

¶ ¶
=

¶ ¶ .

Therefore, the solution to the internal Neumann problem is sought in the form of a series

[ ]
0

( , ) cos( ) cos( ) ,
n

n n
n

u a n b n
R
rr j j j

µ

=

= + , (21)

where the coefficients ​ n ​ are determined from the boundary condition���� ( )
R

u f
r

j
r =

¶
=

¶

2 2

0 0

( ) cos( ) , ( ) sin( ) , 1, 2,.....n n
R Ra f n d b f n d n
n n

p p

j j j j j j
p p

= = =

The solution to the external Neumann problem is sought in the form of a series

[ ]
0

( , ) cos( ) cos( ) ,
n

n n
n

u a n b n
R
rr j j j

-µ

=

= + (22)

where the coefficients ​ and​ .determined from the boundary

condition�� �� ( )
R

u f
r

j
r =

¶
=

¶ calculated using the same formulas
R R

u u
n r rr= =

¶ ¶
= -

¶ ¶ .

Example 1.Find the steady-state temperature inside an unlimited cylinder of radius ​ if a flow is

given on its side surface��
3cos

S

u
n

j¶
=

¶ .

Solution. We need to solve the internal Neumann problem

3

0, 0 , 0 2 ,

cos , 0 2 ,
S

u R

u

r j p

j j p
r

= < < <

¶
=

¶

First of all, it is necessary to check the fulfillment of the solvability condition for this Neumann
problem, i.e. make sure that ​ (Here ​ the circumference of our circle).� −
In fact,
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[ ]
2 2 2

3

0 0 0

cos cos cos(3 ) cos 0.
2 4С

u R Rds Rd d d
n

p p p

j j j j j j j¶
= = + + =

¶ (23)

Further, because 3 3 1cos cos cos(3 )
4 4

j j j= + ​ , then 1 3
3 1,
4 12

a R a R= = ​ and that's all

the remaining coefficients in the series giving the solution to the internal problem
Neumann, go to zero. Therefore the solution has the form

� �,  � = � +
3�
4

cos� +
�3

12�2 cos 3� , (24)

where is an arbitrary constant. Comment. Neumann's problem can also be solved for a ring. The
boundary conditions in this case will consist of specifying the external normal derivative:� −

1 1 2 2( , ) ( ), ( , ) ( ).u uR f R fj j j j
r r
¶ ¶

- = =
¶ ¶

(25)

In this case, solving the problem is possible only if the condition is met
2 2

1 1 2 2
0 0

( ) ( )R f d R f d
p p

j j j j= (26)

and is determined up to an arbitrary constant.
Conclusion:

The Neumann problem is one of the fundamental boundary value problems of
mathematical physics. It consists in finding a solution to a differential equation in a certain area,
provided that at the boundary of this area the value of the derivative of the solution along the
normal to the boundary is specified. This problem has wide application in various fields of
science and technology, such as potential theory, elasticity theory, heat conduction theory and
many others. The solution to the internal Neumann problem can be obtained using various
methods, depending on the shape and size of the region, as well as on the boundary conditions.
One of the most effective methods is the method of integral equations, which allows you to reduce
the problem to solving an integral equation at the boundary of the region. The solution of this
equation gives the value of the desired function on the boundary, and then, using Green's formula,
one can find the solution inside the domain. The internal Neumann problem in space is to find a
solution to a differential equation in a three-dimensional domain, provided that the value of the
derivative is given at the boundary of this domain solutions normal to the boundary. This problem
is more complex than the two-dimensional case and requires the use of more complex
mathematical methods, such as potential theory and the theory of integral equations in space. In
order for the internal Neumann problem to have a solution, a number of conditions must be met.
Firstly, the region in which the problem is considered must be connected and have a sufficiently
smooth boundary. Second, the boundary conditions must satisfy certain consistency conditions
that ensure the existence of a solution. Thirdly, certain integral conditions must be satisfied at the
boundary of the region, which relate the values ​ ​ of the solution's normal derivative with other
characteristics of the problem. Consider an example of solving the internal and external Neumann
problems for a circle. Let the area in which the problem is considered be a circle of radius R, the
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center of which coincides with the origin of coordinates. Neumann's internal problem is to find a
solution to a differential equation in a circle, provided that the value of the normal derivative of
the solution is specified on the boundary of the circle. The external Neumann problem consists of
finding a solution to a differential equation outside a circle, provided that the normal derivative of
the solution is given on the boundary of the circle. The solution to the internal Neumann problem
for a circle can be obtained using the method of separation of variables. In this case, the solution
is represented as a series, the coefficients of which are found from the boundary conditions. The
solution to the external Neumann problem for a circle can be obtained using the potential method,
in which the solution is represented in the form of a single or double layer potential distributed
along the boundary of the circle.
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