SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN:2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 11 (2024)

УДК 539.172

EXCITATIONS OF ISOMER STATES OF ^{89m,g}Zr IN THE REACTIONS (γ,n) AND (n,2n) ON THE ⁹⁰Zr NUCLEUS

МУКАДДАС МАМАЮСУПОВА,

Национальный университет Узбекистана.

Физический факультет доцент Ф.-м.ф.н.

Тел: (97) 729 88 78

АСРОРБЕК АЛИЖОНОВ

Национальный университет Узбекистана.

Физический факультет студент 2 курса

Abstract: The cross sections for the formation of isomeric states in the reactions (γ , n) and (n, 2n) on the 90 Zr. nuclei were measured by the induced activity method. The energy dependences of the isomeric ratio of the yields of reactions (γ , n) in the energy range of 14–35 MeV with a step of 1 MeV are obtained. The experimental results are compared with the data of other works and the TALYS-1.6 calculation.

Keywords: nuclear reactions, isomeric ratios, bremsstrahlung, radioactivity, cross section, activity, isomer, nucleus.

Аннотация: Методом наведенной активности измерены сечения образования изомерных состояний в реакциях (γ ,n) и (n,2n) на ядре 90 Zr. Получены энергетические зависимости изомерного отношения выходов реакций (γ , n) в области энергий 14–35 МэВ с шагом 1 МэВ.. Результаты экспериментов сравниваются с данными других работ и расчетом TALYS-1.6.

Ключевые слова: ядерные реакции, изомерные отношения, тормозное излучение, радиоактивность, сечение, активность, изомер, ядро.

Исследования возбуждения изомерных состояний в различных ядерных реакциях имеют фундаментальное и прикладное значения. Изомерные отношения, т.е. отношения выходов и сечений реакций образования остаточных ядер в изомерном и основном состояниях, зависят от спина ядра-мишени и вносимого углового момента, который определяется массой и энергией бомбардирующей частицы, а также механизмом реакции, свойствами возбужденных состояний как в непрерывной, так и в дискретной областях [1,2]. Таким образом, по данным об изомерных отношениях исследуются механизмы ядерных реакций и статистические свойства возбужденных состояний атомных ядер. Важное значение имеет изучение образования изомерных состояний ядер в ядерных реакциях с различными бомбардирующими частицами, которые получать сведения о механизмах ядерных реакций и о свойствах возбужденных состояний атомных ядер.

Особенно интересным является изучение ядерных реакций типа (n,2n) и (γ ,n) на ядрах с 74 \leq A \leq 92. В этой области наблюдается ядерная деформация вытянутого типа. Ядра ⁸¹Br, ⁹⁰Zr и ⁹²Мо находятся в этой области. Кроме того, ядра с замкнутой оболочкой N=50 также

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805 eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 11 (2024)

находятся в этой области и являются объектом активного исследования как структуры уровней, так и изомерных отношений на этих ядрах в реакциях (n,2n) и (γ,n) [3].

В настоящей работе методом наведенной активности исследовано сечение возбуждения изомерных состояний ^{89m}Zr в ядерной реакции (n,2n) при энергии нейтронов 14.1 МэВ. Определена энергетическая зависимость изомерного отношения выходов реакции типа (γ,n) на ядре ⁹⁰Zr в области энергий 12–35 МэВ с шагом 1 МэВ.

Методика эксперимента

Исследования проводили на нейтронном генераторе НГ-150 Института ядерной физики АН РУз [4]. В качестве исходных экспериментальных данных по реакции (γ ,n) служил атлас гамма-спектров радионуклидов, полученных в фотоядерных реакциях в области энергий 10–35 МэВ с шагом 1 МэВ на тормозном γ -пучке бетатрона. Временные режимы, т.е. время облучения, паузы и измерения выбрали в соответствии с периодом полураспада образующихся радионуклидов. В качестве мишени использован ZrO₂ высокой чистоты (99.9%) прессованный в виде диска с диаметром 20 мм. Каждый образец ZrO₂ помещался между двумя медными фольгами (в случае нейтронного облучения использовали алюминиевую фольгу). Масса образцов составляла 1–3 г. Время облучения нейтронным потоком с энергей 14.1 МэВ составляет 0,5-1 ч.

Наведенную активность мишеней измеряли на γ-спектрометре фирмы "Canberra", состоящем из германиевого детектора HPGe (с относительной эффективностью 15%, разрешением для линии ⁶⁰Co 1332 кэВ – 1.8 кэВ), цифрового анализатора DSA 1000 и персонального компьютера с програм-мным пакетом Genie 2000 для набора и обработки γ-спектров. Гамма-спектры мишеней начинали измерять после паузы 5–60 мин в течение 30–120 мин.

Заселение изомерного и основного уровней идентифицировали по γ -линиям. Спектроскопи-ческие характеристики ядер-продуктов реакций (γ ,n) и (n,2n), необходимые для обработки результатов измерений, взяты из [5,6] и приведены в табл. 1, схема распада показана на рис. 1. где I^{π} – спин и четность уровня, $T_{1/2}$ – период полураспада ядра, I_{γ} – интенсивность γ -квантов данной энергии на распад, p – коэффициент ветвления γ -перехода.

I	1	1		1	1
Ядро-продукт	J^{π}	$T_{1/2}$	E _v , keV	$I_{\gamma}, \%$	Р
1 1 1 3	A.		17		
^{89m} Zr	1/2-	4.18 мин	511.00	2.80	0.94
		.,		_,	
^{89m} Zr	1/2-	4.18 мин	587.80	93.00	0.94
		.,			
^{89m} Zr	1/2-	4.18 мин	1508.00	6.70	0.94
		.,			
^{89g} Zr	9/2+	78.8 ч	511.00	47.00	-
			,	,	
^{89g} Zr	9/2+	78.8 ч	909.10	99.00	-
	-				

Таблица 1. Спектроскопические характеристики ядер-продуктов реакции (ү, n) и (n, 2n)

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 11 (2024)

Рис. 1. Схема распада ⁸⁹Zr

Результаты и их обсуждение

Реакция (ү,п)

Полученные экспериментальные изомерные отношения выходов и сечений реакций (γ,n) и (n,2n) на ядре ⁹⁰Zr приведены на рисунке 2 и в табл. 2 и 3.

Рис. 1. Энергетические зависимости изомерных отношений выходов реакций ${}^{90}Zr(\gamma,n)^{89m,g}Zr$

Абсолютная ошибка измерений изомерных отношений выходов определяется статистической погрешностью счетов в фотопике измеряемой *γ*-линии и эффективностью регистрации *γ*-излу-чения.

Как видно из рисунка 2, значение возрастало от порога реакции примерно до 28 МэВ, что обусловлено, по-видимому, увеличением числа каскадных γ-переходов с ростом энергии возбуждения, а также моментов, уносимых квазипрямыми нейтронами. При энергии $E_{\gamma} \sim 21$

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805 eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 11 (2024)

МэВ ($E_{\gamma max} \ge E_m + \Gamma$, где E_m - положение максимума; Γ - полуширина гигантского дипольного резонанса) наступало насыщение кривой d, поскольку дальнейшее увеличение плотности уровней, возможно, не меняло заметным образом вероятность образования каскадов, приводящих к метастабильным состояниям. Полученные результаты в пределах погрешности измерений согласуются с данными других работ, полученных при фиксированных энергиях. В диапазоне энергии 29-35 МэВ изомерные отношения для 90 Zr измерены впервые. Для аппроксимации экспери-ментальных данных по изомерным отношениям выходов использовали сигмоидальную (ступенькообразную) функцию Больцмана (сплошная кривая).

В табл. 2 данные об изомерных отношениях выходов реакций приведены в виде d=Y_m/Y_g. В области энергий возбуждения выше гигантского дипольного резонанса, т.е. в области 25–35 МэВ, энергетическая зависимость изомерных отношений выходов реакции ⁹⁰Zr(γ,n)^{89m,g}Zr определена впервые.

Е, МэВ	Y _m /Y _g	Источник
16,5	0,70±0,04	7
18,0	0,75±0,05	7
20,5	0,92±0,06	7
30	0,61	8
22	1,44±0,02	8
19	1.46±0.05	9
25	1.21±0.04	9
30	1.35±0.05	10
40	0,85±0,4	11
25	1.35±0.05	Настоящая работа
30	1.34±0.05	Настоящая работа

Таблица 2. Изомерные отношения выходов реакций ${}^{90}Zr(\gamma,n)^{89m,g}Zr$

Как видно из табл. 2, результаты, полученные нами для реакций (γ,n) в пределах погрешностей согласуются с данными следующих работ [8,10]. В области энергий E>25 МэВ энергетическая зависимость изомерных отношений выходов получены нами впервые.

Реакция (n,2n)

В случае реакции (n,2n) (табл. 3). Здесь также приведены расчетные данные сечения реакции, проведенные с помощью программного пакета TALYS-1.6[12,13]. Результаты теоретических расчетов приведены для сечений образования изомерных состояний, относительно результатов других работ несколько занижены. В случае сечений образования основного состояний значение в пределах погрешностей измерений согласуются.

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 11 (2024)

Для получения абсолютных значений сечений основного и изомерного состояний использовались методы сравнения выходов исследуемой и мониторной реакции. В качестве мониторной реакции использовали ${}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$ ($T_{1/2}$ =15 ч, E_{γ} =1368 кэВ), сечение которой равно: $\sigma_m = 121.57 \pm 0.57$ мбн при $E_n = 14.1$ МэВ [14].

Абсолютная ошибка изомерных отношений сечений реакций определяется статистической погрешностью счетов в фотопике измеряемой γ-линии, эффективностью регистрации γ-излучения и ошибкой значений сечений мониторов.

Таблица 3. Сечение реакции 90 Zr (n,2n) 89m,g Zr

Е _n , МэV	σ _m , мб	σ _g , мб	$\sigma_m \sigma_g$	Источник
14.8	130±12	387±35	-	15
14.1	76±7	580±38	0,131±0,012	Настоящая работа
14*	77	516,96	0,149	Настоящая работа
14,5*	120,21	610,54	0,197	Настоящая работа

Примечание. *Расчет сечений проводили по программе TALYS-1.6.

Для расчета изомерных отношений выходов использовали программный пакет TALYS-1.6. Общая схема протекания реакции предполагается следующей: вначале происходит поглощение дипольного у-кванта на ядре с образованием составного ядра, затем происходит испарение нейтрона с образованием возбужденного состояния конечного ядра. Возбуждение дочер-него ядра снимается каскадным испусканием у-квантов с образованием в итоге основного или изомерного состояния конечного ядра.

Плотность ядерных уровней рассчитывали по формуле Бета-Блоха [2], спиновая часть которой имеет вид

$$\rho(J) = (2J+1)\exp -(J+1/2)^2 / 2\sigma^2$$
(1)

Улучшить количественное согласие расчетов с экспериментом удалось при фиксации параметра спинового ограничения σ . При этом удовлетворительное согласие достигается при $\sigma = 2.5\hbar$.

ЗАКЛЮЧЕНИЕ

Из анализа данных, приведенных в табл. 2 и 3, следует, что экспериментальные исследования возбуждения изомерных состояний в фотоядерных реакциях типа (γ ,n) на ядре ⁹⁰Zr проводили в основном в области энергий 10–25 МэВ, т.е. в области гигантского дипольного резонанса. В области энергий, выше гигантского резонанса, энергетическая зависимость изомер-ных отношений мало изучена. Благодаря этим исследованиям, можно получить информацию о плотности ядерных уровней и о вкладе прямых процессов в механизм фотоядерных реакций в данной области энергий.

SJIF 2019: 5.222 2020: 5.552 2021: 5.637 2022:5.479 2023:6.563 2024: 7,805

eISSN :2394-6334 https://www.ijmrd.in/index.php/imjrd Volume 11, issue 11 (2024)

Благодарности. В заключение автор выражает благодарность М. Каюмову и О. Жураеву за облучение образцов на нейтронном генераторе, Ж. Рахмонову за помощь в измерениях, С.В. Артемову за полезные обсуждения.

ЛИТЕРАТУРА

1. A.S. Danagulyan, G.H. Hovhannisyan, T.M. Bakhshiyan, R.H. Avagyan, A.E. Avetisyan, I.A. Kerobyan, R.K. Dallakyan. Physics of Atomic Nuclei **78**, No.4, 447 (2015).

2. V.M. Mazur. Fiz. Elem. Chastits At. Yadra **31**, No.2, 1043 (2000); [Phys. Part. Nucl. (Engl. Transl.) **31**, No.2, 188 (2000)].

3. S.R. Polvonov. J. Nucl. Phys. 90, No.5, 567 (2013).

4. <u>http://www.inp.uz</u>.

5. R.B. Firestone, V.S. Shirley, C.M. Baglin, Table of isotopes CD-ROM, 8-th Ed. (1996).

6. R. Vänska, R. Rieppo. The experimental isomeric cross-sections ratio in the nuclear activation technique. Nucl. Instrum. Methods **179**, 525-532 (1981).

7. Hoang Dac Luc, Tran Duc Thiep, Truong Thi An, Phan An. Isomeric yield ratios in the production of Sm-143, Nd-141, Zr-89 and Pd-109 by 15 - 20 MeV bremsstrahlung. Bulgarian J.of Physics, 1987, Vol. 14, part 2, p.15.

8. Kato T. – J. Radioanal. Chem., 1973, v.16, N1, p.307.

9. Antonov A.D., Balabanov N.P., Belov A.G., Kondev F.G., Peres G., Tonchev A.P., Khristov Kh.G. //Isomeric ratios in the reaction (gamma, n) for nuclei in the range A=70–125// Conf.Nucl.Spectroscopy Nucl.Struct., Minsk 1991.

10. Palvanov S.R., Razhabov O. Isomeric yield ratios of photonuclear reactions Eg-max 25 and 30 MeV. Atomnaya Energiya v.87, p.75, – 1999.

11. Demekhina N.A., Danagulyan A.S., Karapetyan G.S. Isomeric ratio analysis in (gamma,n) and (gamma,p) reactions at giant-resonance energy range. Yadernaya Fizika, 2002, vol.65, part 2, p.390.

12. A.J. Koning, S. Hilaire, M.C. Duijvestijn TALYS-1.0. Proc. of the Int. Conf. on Nuclear Data for Science and Technology. Eds. O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray ND 2007 (Nice, France April 22 -27, 2007). EDP Sciences 211-214 (2008).

13. <u>www.talys.eu</u>

14. Filatenkov A.A., Chuvaev S.V., Aksenov V.N. and Jakovlev V.A. Systematic measurement of activation cross sections at neutron energies from 13.4-14.9 MeV.

15. Sothras S.L., Salaita G.N. (n,2n) cross sections at 14.8-MeV on some closed shell nuclides. //Journal of Inorganic and Nuclear Chemistry. V.40, pp.585. 1978.