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It is known that the Fourier method, based on the separation of variables, is one of the
main methods of the theory of partial differential equations. When applying this method to
solving a particular problem for partial differential equations with two independent variables. The
desired solution to the problem ( , )U x t under study is sought in the form of two functions, i.e. in
the form ( , ) ( ) ( )U x t X x T t= . Substituting this kind functions ( , )U x t into the equation and
the conditions of the problem, and then, having performed some transformations, the given
problem is replaced by two problems regarding the functions ( )X x and ( )T t . From this, it
follows that the Fourier method is applicable only to those problems that allow separation of
variables, i.e. to problems that split into two problems with respect to functions of one variable.
Let us consider small oscillations of a homogeneous rectangular membrane with sides p and
q fixed along the contour
This problem is reduced to solving the wave equation
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We will look for particular solutions of equation (1) in the form
( , , ) ( ) ( , ),u x y t T t x yu= (4)

satisfying the boundary conditions (2).
Substituting (4) into equation (1), we obtain
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It is obvious that this equality can only take place if both of its parts are equal to the same
constant value. Let us denote this constant by - 2k and, taking into account the boundary
conditions (2), we find that
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2''( ) ( ) ( ) 0T t ak T t+ = (5)
2 0,xx yy ku u u+ + = (6)

0

0

0,

0,
x

y

u

u
=

=

=

=

0,

0
x p

y q

u

u
=

=

=

=
(7)

We will solve the boundary value problem (6), (7) using the Fourier method,
( , ) ( ) ( ).x y X x Y yu = (8)

Substituting (8) into equation (6), we obtain
2''( ) ''( ) ,

( ) ( )
Y y X xk
Y y X x

+ = -

from which we obtain two equations:
2
1''( ) ( ) 0,X x k X x+ = 2

2''( ) ( ) 0,Y y k Y y+ = (9)
Where

2 2 2
2 1k k k= - or 2 2 2

1 2 .k k k= + (10)
General solutions of equations (9), as is known, have the following form:
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From the boundary conditions (7) we obtain
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from which it is clear that 1 3 0,C C= = if we put it 2 4 1,C C= = then it turns out:

1( ) sin ,X x k x= 2( ) s ,Y y co k y= (13)
and it should be

1sin 0,k p= 2sin 0.k q= (14)

From equations (14) it follows that 1k and 2k have countless meanings:
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Then from equality (2.1.10) we obtain the corresponding values of the constant 2 :k
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Thus, the eigenvalues (2.1.15) correspond to the eigenfunctions
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mnx n yx y
p q

pu = (16)

boundary value problem (6), (7).
Turning now to equation (5), we see that for each eigenvalue its 2 2

mnk k= general solution
has the form:
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( ) cos sin .mn mn mn mn mnT t A ak t B ak t= + (17)
Thus, by virtue of (4), (16) and (17), the particular solutions of equation (1) satisfying the

boundary conditions (2) have the form:
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m x n yu x y A ak t B ak t
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= + (18)

To satisfy the initial conditions (3), we compose a series
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If this series converges uniformly, as do the series obtained from it by double term-by-
term differentiation with respect to ,x y and t then its sum will obviously satisfy equation (1) and
boundary conditions (2). To satisfy the initial conditions (3), it is necessary that
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Assuming that the series (20) and (21) converge uniformly, we can determine the
coefficients mnA and ,mnB multiplying both parts of equalities (20) and (21) by

1 1sin sinm x n y
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p p

and integrating over x the interval from 0 to p and over y 0 to .q Then, taking into account that
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Solution (19) can also be written in the form
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Where
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2 2 ,mn mn mnM A B= + ( )/ .mn mn mnarctg A Bj =
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