OPTIMAL APPLICATION POSSIBILITIES OF THREE-BARRIER PHOTODETECTORS BASED ON GALLIUM ARSENIDE IMPURITIES IN ADVANCED TECHNOLOGIES

1 Zoirova L., 2 Mukhammadieva M.

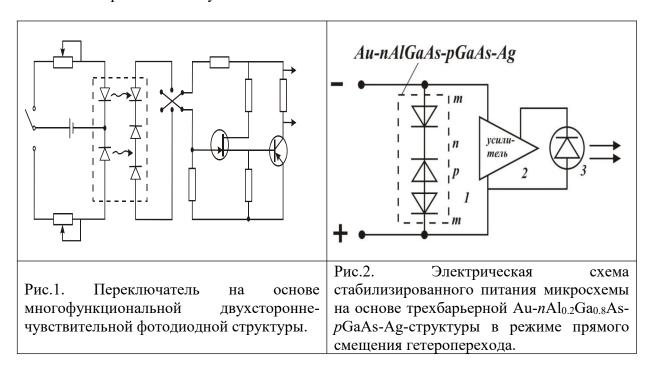
1 Navoi University of Innovations, Associate Professor 2 Navoi University of Innovations, Lecturer

Abstract. This article presents the potential applications of three-barrier photodiode structures based on gallium arsenide, their use in advanced technologies, communication lines, and mobile communication systems. Various structural modifications and their types are discussed.

Keywords: Gallium arsenide, three-barrier structure, photodiode, impurity, photosensitivity, barrier, p-n junction, spectral range, electrophysical characteristics.

ОПТИМАЛЬНЫЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ТРЕХБАРЬЕРНЫХ ФОТОПРИЁМНИКОВ НА ОСНОВЕ ПРИМЕСЕЙ АРСЕНИДА ГАЛЛИЯ В ПЕРЕДОВЫХ ТЕХНОЛОГИЯХ

Аннотация. В данной статье приведены возможности использования трёхбарьерных фотодиодных структур на основе арсенида галлия, их использования в передовых технологиях, в линиях коммуникации, а также сотовой связи. Приведены данные модификации структуры и их разновидности.


Ключевые слова. Арсенид галлия, трёхбарьерная структура, фотодиод, примесь, фоточувствительность, барьер, p-n-переход, спектральный диапазон, электрофизические характеристики.

Введение. Оптоэлектронные устройства на основе излучателя и приемника оптических сигналов широко используются для создания различных систем, передачи оптической информации через волоконно-оптические линии связи [1]. В них используются спектральный диапазон от ближнего инфракрасного (0.85 мкм) до 1.3-1.5 мкм, в соответствии с используемым оптическим волокном второго или третьего поколения. Здесь следует отметить, что в зависимости от используемого фотоприемника и его свойств существенно изменяются функциональные возможности электронных систем на их основе. При использовании биполярного транзистора, предоставляется возможность работать с большим уровнем оптического сигнала и с меньшим быстродействием. Для увеличения быстродействия системы приема оптической информации стали практиковать использование полевых транзисторов совместно с фотодиодом для волоконно-оптических линий связи. Проводятся исследования по использованию лабораторных образцов полевых фототранзисторов на основе арсенида галлия в фотонике. Для регистрации слабых оптических сигналов можно использовать универсальные двухбазовые и двухбарьерные фотодиоды с внутренним усилением [2]. Их отличие состоит в том, что при обеих полярностях включения осуществляется ограничение инжекции носителей реализуется генерационный механизм формирования рабочего тока. В одном случае рабочим становится запираемый *p-n-*переход, а в другом *n-m-*переход. Последовательное соединение трех и двух переходов приводит к уменьшению обратного тока, а также общей емкости. В режиме запирания металлополупроводникового перехода оптический диапазон определяется преобладанием фоточувствительности в коротковолновой области спектра. случае запирания *p-n-*перехода преимущественно спектральной В

чувствительностью гомо или гетероперехода. И таким образом, путем изменения полярности рабочего напряжения возможно изменение оптического рабочего диапазона. Проведенные исследования электрофизических и фотоэлектрических характеристик трехбарьерных фотодиодных структур на основе арсенидгаллиевых гетерослоев, а также сопоставительный анализ процессов модуляции базовых областей и образования фототоков показали, что они могут быть использованы в различных устройствах приема и передачи оптического сигнала. Так как они охватывают широкий оптический диапазон от 0.4 мкм до 1.6 мкм, а при смене освещаемой поверхности в зависимости от примесных уровней во взаимосвязи со свойствами запирающих барьеров появляется возможность управления фототоком, что обеспечивает их применение в оптоэлектронных схемах и волоконно-оптических устройствах.

Например, трехбарьерная фотодиодная $Au-nAl_{0.2}Ga_{0.8}As-pGaAs-Ag$ -структура благодаря изменению спектрального диапазона чувствительности и величины фототока при смене полярности рабочего напряжения при его использовании совместно с источником излучения позволяет выполнять функции переключателя, рис.1. Для этого в качестве излучателя используется, например, два светодиода с длиной волны излучения в ближнем и дальнем инфракрасном диапазоне [3]. Рабочая точка фотодиода при попеременном возбуждении длинноволновым и коротковолновым излучением переходит из одной области в другую и таким образом, будет осуществляться переключение объекта подключенного к переходу из одного режима на другой (рис.1). Кроме того, в режиме прямого смещения гетероперехода наблюдаемый эффект лавинного умножения на переходе металл-гетерослой ($Al_{0.2}Ga_{0.8}As$) показывает возможность его использования в качестве стабилизатора напряжения. На рис.2. приведена схема стабилизированного питания микросхемы с излучателем.

It is known that heterostructures are widely used in optoelectronic, communication, and wireless types of information and technical systems.

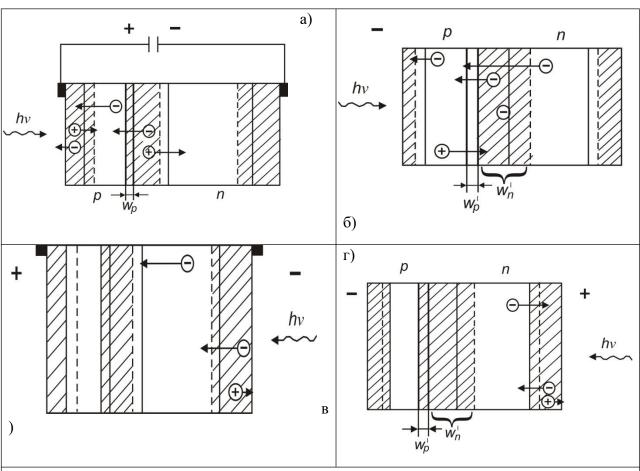


Рис.3. Принципы разделения фотогенерированных носителей в зависимости от режима включения и освещаемой поверхности трехбарьерной Au-pAlGaInAs-nGaAs:O-Agструктуры:

- а) в режиме прямого смещения при подсветке со стороны гетерослоя;
- б) в режиме запирания при подсветке со стороны гетерослоя;
- в) в режиме прямого смещения при подсветке со стороны барьера металл-nGaAs;
- г) в режиме запирания при подсветке со стороны барьера металл-nGaAs.

Если подробно рассмотреть фотогенерационные процессы в гетеро-трехбарьерных структурах, то из рис.3(а,б) видно, что возбуждение фотодиодной структуры со стороны гетерослоя (pAlGaInAs) приводит к генерации электронно-дырочных пар в зависимости от режима включения. В режиме прямого смещения гетероперехода генерация носителей осуществляется с областей объемного заряда барьера металл-полупроводник и гетероперехода, а также электронов с гетеробазовой области. В режиме запирания гетероперехода имеем генерацию носителей как с гетерослоя, так и запираемого гетероперехода возбуждением электронов с примесных уровней.

При смене освещаемой поверхности (рис.3.в,г), т.е. при освещении со стороны с более толстого (350 мкм, nGaAs:O) запираемого барьера металл-полупроводник осуществляется

eISSN 2394-6334

Impact factor: 7,854

Volume 12, issue 10 (2025)

генерация электронов и дырок, а с квазинейтральной области (nGaAs) имеем генерацию электронов с примесного уровня кислорода. В режиме запирания гетероперехода электронно-дырочные пары разделяются из обедненного слоя под металлом и возбуждаются электроны из примесных уровней. Так как гетеропереход расположен глубоко на расстоянии 350 мкм, то он не принимает участия в фотогенерационных процессах. Следует также отметить, что в данном гетеропереходе квазинейтральная область гетерослоя модулируется поочередно со стороны металла и гетероперехода при смене полярности рабочего напряжения.

Для оценки, падающих на каждом переходе напряжений, обратимся к вольтамперной характеристики специально изготовленной трехбарьерной Au-pAlGaInAs-nGaAs-Ag-структуры. Экспериментальные результаты показали, что во всем диапазоне напряжений их прямые и обратные ветви совпадают (рис.4).

Как показано на эквивалентной схеме (рис.5.а,б), сопротивления первого и третьего переходов, представляющих собой последовательно соединенные барьеры Шоттки, можно принять как одно $R_1^1=R_1+R_3$ и p-n-перехода как R_2 . При этом токи, протекающие через каждый переход являются равными $I^{m_1-p}=I^{p-n}=I^{n-m_2}$.

Так как при смене полярности внешнего напряжения кривые вольтамперной характеристики ложатся друг на друга (рис.4, кривые 1,2), то сопротивления R_1^1 и R_2 равны между собой, т.е. трехбарьерная структура является симметричной $R_1^1 = R_2$. На основе данных вольтамперной характеристики, в соответствии с методикой, изложенной в работе [4], определим напряжения, падающие на каждом переходе. Напряжение, падающее на R_1^1 , обозначим через V_1^1 , а на $R_2^{}$ - через $V_2^{}$. Сумма этих напряжений будет представлять собой прилагаемое общее напряжение: $V_{oбщ}^{m_1-p_{-n-m_2}} = V_1^1 + V_2^{p_{-n}}$. В свою очередь: $V_1^1 = V_1^{m_1-p} + V_3^{n-m_2}$, где $V_1^{m_1-p}$ и $V_3^{n-m_2}$ напряжения, падающие на m_1 -p и nтоков, протекающих через все переходы: $R_1^1 \quad V_2^{p-n} = V_1^1 \quad R_2^{p-n}, \quad V_2^{p-n} = \frac{R_2^{p-n} \quad V_1^1}{R_1^n}, \quad V_2^{p-n} = R_2^{p-n} \quad I_{oбiu}^{m_1-p-n-m_2}$. Для трехбарьерной \mathbf{m}_1 -p-n- \mathbf{m}_2 системы, принимая $R_2^{p-n}=R_1^1=R_1^{m_1-p}+R_3^{n-m_2}$ как в симметричной структуре, определим сопротивление отдельного ($R_2^{}$ или $R_1^1^{}$) перехода в точке перегиба вольтамперной характеристики: $R_2=\frac{R_0}{2}=\frac{V_0}{2I_0}$, где V_0 , I_0 -напряжение и ток в точке перегиба. Для последовательно-соединенных трех переходов результирующее сопротивление будет равно: $R_0 = \frac{V_0}{I_0}$. Поскольку: $V_2^{p-n} = \frac{V_0}{2I_0} I_{oбщ}^{m_1-p-n-m_2}$ (1.1) и $V_1^1 = V_{oбщ}^{m_1-p-n-m_2} - V_2^{p-n}$ (1.2). На основе формул (1.1) и (1.2), для случая запираемых переходов металл-полупроводник можно вычислить напряжения, падающие на R_2^{p-n} и R_1^1 переходах. При смене полярности прилагаемого напряжения, данные для R_2^{p-n} будут заменены данными R_1^1 перехода. В случае, когда концентрации носителей в p- и n-областях равны ($N_p = N_n$), в том числе высоты потенциальных барьеров металло-полупроводниковых переходов тоже равны $\varphi_1=\varphi_2$ будем иметь: $V_1^{m_1-p}=V_3^{n-m_2}$ и $V_1^1=2V_1^{m_1-p}$. В результате из зависимости (1.1)

для напряжения, падающего на металлополу-проводниковом m_1 -p-переходе: $V_1^{m_1-p} = \frac{V_0}{2I} \cdot \frac{I_{oбщ}^{m_1-p-n-m_2}}{2} = \frac{V_0}{4I} \cdot I_{oбщ}^{m_1-p-n-m_2}.$

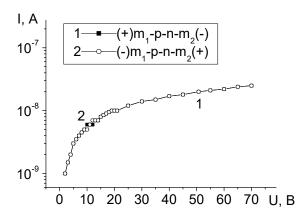


Рис.4. Зависимость вольтамперной характеристики при различных режимах включения $Au-pAl_{0.05}Ga_{0.9}In_{0.05}As-nGaAs-Ag-структуры$.

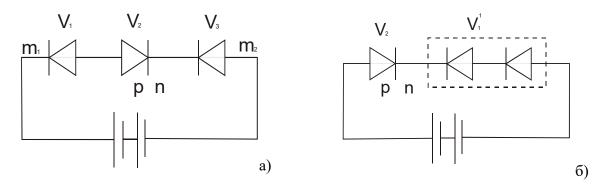


Рис.5. а). Эквивалентная схема трехбарьерной структуры; б) Упрощенная эквивалентная схема трехбарьерной структуры, приведенной к двухбарьерной.

Находим выражения для соответствующих напряжений:
$$V_1^1 = \frac{V_0}{4I_0} \ I_{oбщ}^{m_1-p-n-m_2} = V_1^{m_1-p} + V_3^{n-m_2} \ \text{и} \ V_3^{n-m_2} = V_1^1 - V_1^{m_1-p} \ .$$

Таким образом, на основе вольтамперных характеристик трехбарьерной структуры можно определить перераспределение потенциала между переходами, толщины слоев объемного заряда и напряженности электрических полей, емкости каждого из переходов, которые позволяют уточнить механизмы токопереноса и особенности фоточувствительности. Так с напряженностью и диэлектрической проницаемостью прямо пропорционально связана емкость перехода. При последовательном соединении переходов общая емкость

уменьшается.

Итак, можно сделать вывод, что трехбарьерные фотодиодные структуры на основе арсенида галлия можно использовать для широкого применения в оптоэлектронных схемах и волоконно-оптических линиях связи.

Литература

- 1. Fundamentals of optical liber communications. Edited by M.K.Bamosci. Academic Press, inc. New York, 1976. p.230.
- 2. Каримов А.В., Ёдгорова Д.М. Физические явления в арсенидгаллиевых структурах с микрослойным квазипериодическим переходом. Изд.Фан, Ташкент, 2005. С.115-117. 3.Арипов Х.К., Каримов А.В., Ёдгорова Д.М., Зоирова Л.Х., Абдулхаев О.А. Opticelectrical switches on the basis of modernized multifunctional photodiode structures. // 2-Интернациональная конференция по оптической и беспроводной связи 11-16 сентября 2006. -Ташкент, 2006. -С.56.
- 4. Зоирова Л.Х. Влияние электрического поля на спектральную чувствительность трехбарьерной структуры. // УФЖ, 2008. -V10. -№4-5. С.323-328.
- 5. Х.Кейси, М.Паниш. Лазеры на гетероструктурах. Изд.Мир, Москва, 1981. В 2-х томах. Том 1, -C.226.
- 6. Каримов А.В., Ёдгорова Д.М., Саидова Р.А., Зоирова Л.Х. Механизмы токопрохождения в гетеро m_1 -pAlGaInAs-nGaAs- m_2 -структуре. // Интернациональная конференция: Неравновесные процессы в полупроводниках и в полупроводниковых структурах 2007. -Ташкент, 2007. -С.179-181.
- 7. Ёдгорова Д.М. Ашрапов Ф.М. Фотоэлектрические характеристики микрослойных фотодиодных pAlGaInAs(Zn)-nGaAs-Au-структур. ИФЖ, 2008. -Т.80. -№1. -C.166-172.

