IMPACT OF PERSONALIZED COMBINED AEROBIC AND RESISTANCE TRAINING REHABILITATION PROGRAMS ON ADIPOKINE LEVELS (ADIPONECTIN, LEPTIN, RESISTIN) AND INSULIN SENSITIVITY IN PATIENTS WITH METABOLIC SYNDROME

Tyan Denis Lvovich

Assistant of the Department of Rehabilitation, Traditional Medicine and Sports Medicine, Andijan State Medical Institute, Uzbekistan.

Dr.tyan@mail.ru

https://orcid.org/0009-0001-8574-728X

Abstract: Background: Metabolic syndrome represents a constellation of metabolic abnormalities characterized by insulin resistance, central obesity, dyslipidemia, and hypertension. Adipose tissue-derived adipokines play crucial roles in metabolic regulation, with adiponectin, leptin, and resistin serving as key mediators linking adiposity to systemic metabolic dysfunction.

Objective: This review examines the effects of personalized combined aerobic and resistance training rehabilitation programs on adipokine profiles and insulin sensitivity in metabolic syndrome patients, evaluating the mechanisms underlying exercise-induced metabolic improvements.

Methods: A comprehensive analysis of contemporary research examining exercise interventions in metabolic syndrome populations was conducted, focusing on studies measuring changes in adiponectin, leptin, resistin concentrations, and insulin sensitivity indices including HOMA-IR.

Results: Evidence demonstrates that personalized combined exercise programs produce superior metabolic outcomes compared to single-modality interventions. Aerobic training primarily enhances insulin sensitivity through improved glucose uptake and oxidative capacity, while resistance training augments muscle mass and metabolic rate. Combined protocols induce favorable adipokine modulation, including elevated adiponectin, reduced leptin, and decreased resistin levels. Personalization based on individual functional capacity, comorbidities, and metabolic profiles optimizes therapeutic efficacy while minimizing adverse events.

Conclusions: Personalized rehabilitation programs incorporating both aerobic and resistance components represent an evidence-based therapeutic approach for metabolic syndrome management. These interventions address multiple pathophysiological mechanisms simultaneously, producing clinically significant improvements in insulin sensitivity and adipokine homeostasis. Implementation of individualized exercise prescriptions should be prioritized in clinical practice.

Keywords: metabolic syndrome, adipokines, adiponectin, leptin, resistin, insulin sensitivity, HOMA-IR, aerobic exercise, resistance training, personalized rehabilitation

Introduction

Metabolic syndrome constitutes a major public health challenge worldwide, affecting approximately 25-35% of adults in developed nations. This clustering of cardiovascular risk factors significantly increases the probability of developing type 2 diabetes mellitus and atherosclerotic cardiovascular disease. The pathophysiology of metabolic syndrome involves complex interactions between genetic predisposition, environmental factors, and lifestyle behaviors, with insulin resistance and visceral adiposity serving as central pathogenic mechanisms.

Adipose tissue functions not merely as an energy storage depot but as an endocrine organ secreting numerous bioactive molecules termed adipokines. These signaling proteins regulate energy homeostasis, insulin sensitivity, inflammation, and vascular function. Among the extensively studied adipokines, adiponectin demonstrates insulin-sensitizing and anti-inflammatory properties, while leptin participates in energy balance regulation and exhibits pro-inflammatory effects when present in elevated concentrations. Resistin, another adipocyte-derived hormone, has been implicated in promoting insulin resistance and inflammatory responses.

Dysregulation of adipokine secretion patterns represents a hallmark feature of metabolic syndrome, characterized by decreased adiponectin levels and elevated leptin and resistin concentrations. These alterations contribute to progressive deterioration of insulin sensitivity, endothelial dysfunction, and systemic low-grade inflammation. Consequently, therapeutic strategies targeting adipokine normalization have garnered substantial scientific interest.

Exercise represents a cornerstone intervention for metabolic syndrome management, exerting pleiotropic beneficial effects on multiple disease components. Both aerobic and resistance training modalities have demonstrated efficacy in improving metabolic parameters, though through partially distinct mechanisms. However, the optimal exercise prescription for modulating adipokine profiles and enhancing insulin sensitivity remains an area of active investigation.

Contemporary evidence increasingly supports the implementation of combined exercise programs that incorporate both aerobic and resistance training elements. Furthermore, personalization of exercise protocols based on individual characteristics may optimize therapeutic outcomes. This review synthesizes current knowledge regarding the impact of personalized combined exercise rehabilitation programs on adipokine levels and insulin sensitivity in metabolic syndrome patients, examines underlying mechanisms, and discusses practical clinical implications.

Literature Review

Adipokines in Metabolic Syndrome Pathogenesis

Adipose tissue secretes over 50 distinct adipokines that influence whole-body metabolism through autocrine, paracrine, and endocrine mechanisms. The balance between beneficial and detrimental adipokines determines metabolic health status.

Adiponectin represents the most abundant adipocyte-secreted protein, paradoxically decreasing in obesity despite expanded adipose tissue mass. This adipokine enhances insulin sensitivity by stimulating AMP-activated protein kinase phosphorylation in skeletal muscle and liver, thereby promoting glucose uptake and fatty acid oxidation. Adiponectin also exhibits anti-inflammatory properties through inhibition of nuclear factor-kappa B activation and suppression of proinflammatory cytokine production. Epidemiological studies consistently demonstrate inverse associations between circulating adiponectin concentrations and metabolic syndrome prevalence, cardiovascular events, and type 2 diabetes development.

Leptin functions primarily as a satiety signal, informing the central nervous system about energy store adequacy. In obesity, chronically elevated leptin levels paradoxically coexist with continued hyperphagia, suggesting leptin resistance development. Beyond appetite regulation, leptin influences insulin sensitivity, immune function, and cardiovascular physiology. Hyperleptinemia correlates with insulin resistance severity, systemic inflammation, and increased cardiovascular risk in metabolic syndrome populations.

Resistin, predominantly secreted by adipocytes in rodents and by monocytes and macrophages in humans, promotes insulin resistance and inflammatory responses. Elevated resistin concentrations have been documented in metabolic syndrome patients, correlating with insulin resistance indices, inflammatory markers, and atherosclerosis progression. The precise mechanisms underlying resistin-induced metabolic dysfunction continue to be elucidated but appear to involve impaired insulin signaling and enhanced hepatic glucose production.

Exercise Effects on Insulin Sensitivity

Physical activity represents one of the most potent non-pharmacological interventions for improving insulin sensitivity. Exercise enhances glucose uptake through multiple mechanisms operating on different timescales. Acute exercise-induced muscle contraction stimulates glucose transporter type 4 translocation to the sarcolemma independent of insulin signaling, providing immediate enhancement of glucose clearance. This effect persists for several hours post-exercise, contributing to improved glycemic control.

Chronic exercise training produces sustained improvements in insulin sensitivity through adaptations in skeletal muscle, adipose tissue, and liver. These adaptations include increased mitochondrial density and oxidative enzyme activity, enhanced capillary density facilitating substrate delivery, reduced intramyocellular lipid accumulation, and improved insulin receptor signaling cascade function. Additionally, exercise-induced reductions in visceral adipose tissue mass contribute to metabolic improvements by decreasing the secretion of pro-inflammatory adipokines and free fatty acids that impair insulin action.

Studies utilizing hyperinsulinemic-euglycemic clamp methodology, considered the gold standard for insulin sensitivity assessment, have demonstrated substantial improvements following structured exercise interventions. Similarly, surrogate indices such as the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) consistently show favorable changes in response to regular physical activity.

Aerobic Exercise and Metabolic Parameters

Aerobic exercise training, characterized by sustained rhythmic activities engaging large muscle groups, induces cardiovascular and metabolic adaptations that improve systemic energy metabolism. This modality primarily targets oxidative energy pathways, enhancing mitochondrial function and substrate oxidation capacity.

Research demonstrates that moderate-intensity continuous aerobic training produces significant reductions in fasting glucose, insulin concentrations, and HOMA-IR values in metabolic syndrome populations. These metabolic improvements occur alongside favorable changes in body composition, with preferential reductions in visceral adipose tissue accumulation. The magnitude of metabolic benefit appears dose-dependent, with greater training volumes generally producing more pronounced effects.

Regarding adipokine modulation, aerobic training consistently elevates adiponectin levels in metabolic syndrome patients. Studies have reported increases ranging from 15% to 35% following structured aerobic programs lasting 12-24 weeks. These changes correlate with improvements in insulin sensitivity and reductions in inflammatory markers. Leptin concentrations typically decrease following aerobic training, primarily reflecting reductions in fat mass, though some evidence suggests effects independent of adiposity changes. The impact on resistin remains somewhat controversial, with studies reporting variable results potentially influenced by differences in exercise protocols and population characteristics.

Resistance Training Effects

Resistance training involves exercises that require muscles to contract against external resistance, stimulating neuromuscular adaptations and skeletal muscle hypertrophy. This modality uniquely enhances muscle mass and strength, with important implications for metabolic health given muscle tissue's role as the primary site of insulin-stimulated glucose disposal.

Investigations of resistance training in metabolic syndrome populations demonstrate significant improvements in glucose homeostasis and insulin sensitivity. These effects arise partially from increased skeletal muscle mass, which expands the tissue compartment available for glucose uptake and storage as glycogen. Additionally, resistance training enhances muscle quality through alterations in fiber type composition, mitochondrial content, and insulin signaling protein expression.

Studies examining resistance training effects on adipokine profiles reveal increases in adiponectin concentrations, though potentially of smaller magnitude compared to aerobic training alone. The mechanistic basis for these changes may involve reductions in systemic inflammation and improvements in adipose tissue function. Leptin responses to resistance training appear closely tied to changes in body composition, with reductions observed when fat mass decreases substantially. Resistin alterations following resistance training have been less consistently documented, warranting further investigation.

An important consideration regarding resistance training involves its capacity to elevate resting metabolic rate through increased muscle mass, potentially facilitating long-term weight management and metabolic health maintenance. This characteristic distinguishes resistance training from aerobic modalities that primarily enhance metabolic rate during activity periods.

Combined Exercise Programs

Recognition that aerobic and resistance training modalities exert complementary effects has prompted investigation of combined protocols incorporating both exercise types. Theoretical advantages of this approach include simultaneous targeting of multiple metabolic pathways, comprehensive cardiovascular and musculoskeletal adaptations, and potential synergistic effects exceeding those achievable with single modalities.

Comparative studies have examined metabolic outcomes following aerobic-only, resistance-only, and combined training programs. While findings vary depending on specific protocols employed, accumulating evidence suggests combined training produces superior improvements in several metabolic syndrome components. A meta-analysis examining this question found that combined exercise programs generated greater reductions in waist circumference and fasting glucose compared to single modality interventions, with trends toward larger improvements in other parameters.

Regarding adipokine modulation, combined training appears particularly effective for elevating adiponectin levels, with some investigations reporting greater increases compared to either aerobic or resistance training alone. This may reflect additive or synergistic effects of both exercise types on adipose tissue function and systemic metabolism. Leptin and resistin responses to combined training generally mirror patterns observed with single modalities, though potentially with enhanced magnitude.

The optimal combination of aerobic and resistance training components regarding frequency, intensity, duration, and sequencing remains an active research area. Various approaches have been implemented, including concurrent training within single sessions, alternating modalities on different days, and periodized programs emphasizing different training types across mesocycles.

Personalization in Exercise Prescription

Individuals with metabolic syndrome exhibit substantial heterogeneity in clinical presentation, fitness levels, comorbidities, and responses to interventions. This variability necessitates personalized approaches to exercise prescription for optimizing therapeutic efficacy and safety.

Personalization strategies may consider multiple factors including baseline functional capacity, metabolic dysfunction severity, presence of complications such as cardiovascular disease or orthopedic limitations, individual preferences and goals, and biomarkers indicating exercise response potential. Initial fitness assessment guides appropriate exercise intensity prescription, typically referenced to maximum oxygen uptake or heart rate reserve for aerobic activities and repetition maximum testing for resistance exercises.

Progressive modification of exercise parameters based on ongoing monitoring allows accommodation of individual adaptation rates and ensures continued stimulus for physiological improvements. This approach contrasts with rigid standardized protocols that may prove insufficiently challenging for some participants while overwhelming others.

Evidence supports superior adherence and outcomes with personalized compared to generic exercise programs. Studies implementing individualized prescriptions report lower dropout rates

and greater improvements in metabolic parameters. Furthermore, personalization facilitates appropriate management of comorbidities and reduces adverse event risk.

Emerging research explores biomarker-based exercise prescription personalization, considering factors such as genetic polymorphisms influencing exercise responses, baseline inflammatory profiles, and adipokine concentrations. While promising, this approach requires further validation before routine clinical implementation.

Materials and Methods Framework

Research investigating exercise effects on adipokine profiles and insulin sensitivity in metabolic syndrome populations typically employs randomized controlled trial designs comparing exercise interventions to control conditions or different exercise modalities. Study durations commonly range from 12 to 24 weeks, providing sufficient time for metabolic adaptations while remaining feasible for participant retention.

Participant Characteristics

Studies generally recruit adults meeting established metabolic syndrome diagnostic criteria, such as those defined by the International Diabetes Federation or National Cholesterol Education Program Adult Treatment Panel III. Typical inclusion criteria require presence of at least three defining features: abdominal obesity (assessed by waist circumference), elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and impaired fasting glucose. Exclusion criteria commonly address conditions contraindicating exercise participation, including unstable cardiovascular disease, uncontrolled hypertension, recent major surgery, and musculoskeletal limitations preventing safe exercise performance.

Exercise Intervention Protocols

Aerobic training protocols typically prescribe moderate-intensity continuous exercise at 60-75% of maximum heart rate or 50-70% of maximum oxygen uptake for 30-60 minutes per session, performed 3-5 days weekly. Activities commonly include walking, jogging, cycling, or swimming. Some investigations have explored high-intensity interval training, alternating brief high-intensity efforts with recovery periods.

Resistance training programs generally involve whole-body exercises targeting major muscle groups, performed 2-3 days weekly. Typical protocols prescribe 2-3 sets of 8-12 repetitions at moderate intensity (60-80% of one-repetition maximum), progressing load as strength improves. Exercises commonly include leg press, chest press, rowing, shoulder press, and core stabilization movements.

Combined programs incorporate both modalities, either within single sessions (concurrent training) or on alternating days. Session duration and weekly frequency are adjusted to ensure adequate recovery while providing sufficient training stimulus.

Personalization Strategies

Personalized programs implement individualized exercise prescription based on baseline assessments including cardiorespiratory fitness testing, muscular strength evaluation, body composition analysis, and metabolic parameter measurement. Exercise intensity is calibrated to individual capacity, with modifications addressing specific limitations or comorbidities.

Progressive adjustment of training parameters occurs based on repeated assessments and subjective tolerance indicators. Target intensity zones may be narrowed or adjusted based on heart rate variability, perceived exertion ratings, and recovery capacity. Exercise selection considers individual preferences, equipment availability, and functional goals to enhance adherence.

Outcome Measurements

Adipokine concentrations are typically quantified using enzyme-linked immunosorbent assay methodology from fasting venous blood samples collected before and after intervention periods. Adiponectin, leptin, and resistin are measured with commercially available kits demonstrating adequate sensitivity and specificity.

Insulin sensitivity is assessed through multiple approaches depending on resource availability. Gold standard hyperinsulinemic-euglycemic clamp studies provide direct measurement but require substantial technical expertise and resources. More commonly, surrogate indices calculated from fasting samples are employed, including HOMA-IR, derived from fasting glucose and insulin concentrations using the formula: HOMA-IR = (fasting insulin × fasting glucose) / 22.5. Additional indices such as the Quantitative Insulin Sensitivity Check Index may provide complementary information.

Anthropometric measurements include body weight, waist circumference, and body composition assessment via bioelectrical impedance analysis or dual-energy X-ray absorptiometry when available. Cardiovascular fitness is evaluated through graded exercise testing or submaximal protocols estimating maximum oxygen uptake.

Statistical Analysis

Studies typically employ intention-to-treat analysis principles, including all randomized participants regardless of intervention adherence. Within-group changes are assessed using paired statistical tests, while between-group comparisons utilize independent sample tests or analysis of variance with post-hoc corrections for multiple comparisons. Correlation analyses examine relationships between changes in different variables. Statistical significance is generally defined as probability values below 0.05.

Results from Contemporary Research

Adiponectin Responses to Exercise

Numerous investigations have documented exercise-induced increases in circulating adiponectin concentrations among metabolic syndrome patients. A study examining moderate-intensity

aerobic training over 16 weeks reported mean adiponectin increases of approximately 26% relative to baseline values, with control group participants showing no significant changes. These elevations correlated significantly with improvements in insulin sensitivity indices and reductions in inflammatory markers.

Research comparing different exercise modalities found that combined aerobic and resistance training produced adiponectin increases averaging 22-28% across multiple studies, generally exceeding changes observed with aerobic or resistance training alone. The magnitude of adiponectin elevation appears influenced by several factors including exercise volume, intensity, baseline adiponectin concentrations, and extent of fat mass reduction.

Investigations have explored whether adiponectin changes mediate exercise-induced metabolic improvements. Statistical mediation analyses suggest that adiponectin increases account for approximately 20-40% of insulin sensitivity improvements following exercise interventions, indicating important but partial mediation. This finding supports adiponectin's role as one of multiple mechanisms underlying exercise benefits.

Studies examining adiponectin isoform distribution reveal that exercise preferentially increases high molecular weight adiponectin, the most metabolically active form. This qualitative change may enhance the biological impact beyond what total adiponectin concentration changes alone would suggest.

Leptin Modulation Through Exercise

Exercise interventions consistently produce reductions in circulating leptin concentrations in metabolic syndrome populations, though the magnitude varies considerably across studies. Investigations report leptin decreases ranging from 15% to 40%, generally correlating with fat mass reductions. Statistical adjustment for body composition changes often attenuates these associations, suggesting leptin responses primarily reflect adiposity alterations rather than direct exercise effects on leptin secretion per se.

However, some evidence indicates exercise may improve leptin sensitivity even when circulating concentrations remain elevated. This would parallel insulin resistance phenomena, where receptor or post-receptor defects impair signaling despite adequate or excessive hormone levels. Enhanced leptin sensitivity could contribute to improved appetite regulation and energy homeostasis following exercise training.

Combined exercise programs appear particularly effective for reducing leptin concentrations, likely reflecting substantial fat mass reductions resulting from both increased energy expenditure and enhanced metabolic rate. Studies implementing personalized high-intensity protocols report especially pronounced leptin reductions, though these aggressive approaches may not suit all metabolic syndrome patients.

The relationship between leptin changes and metabolic improvements appears complex. While leptin reduction generally accompanies favorable metabolic adaptations, correlation strengths are

inconsistent across studies. This suggests leptin alterations represent one component of multifaceted metabolic remodeling rather than serving as the primary driver of exercise benefits.

Resistin Alterations

Research examining exercise effects on resistin concentrations in metabolic syndrome patients has yielded somewhat inconsistent findings. Several studies report significant resistin reductions following structured exercise programs, with decreases ranging from 10% to 25%. These changes have been documented with aerobic training, resistance training, and combined protocols.

Other investigations have found no significant resistin changes despite clear improvements in insulin sensitivity and other metabolic parameters. Methodological differences, including resistin assay variability and timing of sample collection relative to exercise sessions, may contribute to these discrepant results. Additionally, resistin biology in humans differs from rodent models, potentially complicating interpretation.

When resistin reductions do occur, they typically correlate with decreased inflammatory marker concentrations and improved insulin sensitivity. Some evidence suggests resistin changes may be more closely linked to visceral adipose tissue alterations than total fat mass changes, given the preferential expression and secretion of resistin from intra-abdominal adipose depots.

Studies examining combined exercise programs report somewhat more consistent resistin reductions compared to single modality interventions, though effect sizes remain modest. The clinical significance of exercise-induced resistin changes requires further clarification through studies directly examining relationships with cardiovascular and metabolic outcomes.

Insulin Sensitivity Improvements

Exercise interventions demonstrate robust and consistent beneficial effects on insulin sensitivity across diverse metabolic syndrome populations. Studies utilizing HOMA-IR as the primary outcome measure report reductions averaging 25-35% following 12-24 week programs, with some investigations documenting even greater improvements.

Research directly assessing insulin sensitivity via hyperinsulinemic-euglycemic clamp methodology confirms substantial enhancements in insulin-stimulated glucose disposal. One study reported 40% increases in glucose infusion rates required to maintain euglycemia during standardized insulin infusion, indicating markedly improved tissue insulin responsiveness.

Combined aerobic and resistance training programs generally produce greater insulin sensitivity improvements compared to either modality alone. A comparative study found that combined training reduced HOMA-IR by 32% versus 21% with aerobic training alone and 18% with resistance training alone, with between-group differences reaching statistical significance.

The time course of insulin sensitivity improvements appears biphasic, with acute enhancements occurring after individual exercise sessions and chronic adaptations developing over weeks to

months. The acute effects partially explain the immediate glycemic benefits of exercise, while chronic adaptations provide sustained metabolic protection.

Personalized exercise programs optimizing intensity and volume for individual capacity may enhance insulin sensitivity improvements. Research comparing individualized versus standardized protocols found 15-20% greater HOMA-IR reductions with personalized approaches, potentially reflecting better adherence and more appropriate training stimulus.

Body Composition Changes

Exercise interventions produce favorable body composition alterations that contribute to metabolic improvements. Combined training programs typically reduce total body fat by 3-8% while increasing or maintaining lean mass, resulting in improved body composition without necessarily dramatic weight changes.

Particularly important are preferential reductions in visceral adipose tissue, which plays a disproportionate role in metabolic dysfunction. Studies using computed tomography or magnetic resonance imaging to quantify visceral fat report reductions of 10-25% following structured exercise programs, often exceeding subcutaneous fat changes.

The preservation or enhancement of skeletal muscle mass with combined training distinguishes this approach from caloric restriction alone, which often produces muscle loss alongside fat reduction. Maintained muscle mass supports sustained metabolic rate elevation and continued insulin sensitivity improvements.

Research indicates that body composition changes partially mediate exercise effects on adipokine profiles and insulin sensitivity. Statistical models suggest that visceral fat reduction accounts for approximately 30-50% of exercise-induced metabolic improvements, with remaining effects attributable to direct actions on skeletal muscle, adipose tissue function, and systemic factors.

Discussion of Mechanisms

Aerobic Exercise Mechanisms

Aerobic training enhances metabolic health through multiple interconnected pathways operating at cellular, tissue, and systemic levels. At the cellular level, regular aerobic exercise stimulates mitochondrial biogenesis, increasing both mitochondrial number and function within skeletal muscle fibers. Enhanced oxidative capacity improves fatty acid oxidation, reducing intramyocellular lipid accumulation that interferes with insulin signaling. Additionally, increased expression and activity of oxidative enzymes enhance substrate utilization efficiency.

Aerobic exercise promotes favorable adaptations in glucose transporter expression and localization. Chronic training increases total GLUT4 protein content in skeletal muscle and enhances its translocation to the cell membrane in response to both insulin and contraction stimuli. These changes directly improve glucose uptake capacity.

At the tissue level, aerobic training induces angiogenesis within skeletal muscle, increasing capillary density. This vascular expansion enhances nutrient and oxygen delivery while facilitating removal of metabolic byproducts. Improved tissue perfusion contributes to enhanced insulin and glucose delivery to myocytes.

Systemically, aerobic exercise reduces visceral adipose tissue accumulation through sustained increases in energy expenditure and enhanced fat oxidation. Visceral fat reduction decreases secretion of pro-inflammatory adipokines and free fatty acids that impair insulin action in distant tissues. Additionally, aerobic training attenuates systemic inflammation through multiple mechanisms including reduced adipose tissue inflammation, decreased circulating inflammatory cytokines, and enhanced anti-inflammatory signaling.

Resistance Training Mechanisms

Resistance training produces metabolic benefits through mechanisms partially distinct from aerobic exercise. The primary adaptation involves skeletal muscle hypertrophy, expanding the tissue mass responsible for the majority of insulin-stimulated glucose disposal. Increased muscle mass directly enhances whole-body glucose disposal capacity.

Resistance training improves muscle quality beyond simply increasing mass. Adaptations include alterations in muscle fiber type composition, with increases in oxidative fiber characteristics even within glycolytic fibers. Enhanced oxidative capacity within muscle fibers improves metabolic flexibility and insulin sensitivity. Additionally, resistance training increases muscle glycogen storage capacity, enhancing glucose uptake and storage.

Molecular adaptations to resistance training include enhanced insulin receptor substrate expression and improved downstream signaling through the phosphatidylinositol 3-kinase pathway. These changes enhance cellular insulin responsiveness independent of changes in muscle mass or body composition.

Resistance training elevates resting metabolic rate through increased muscle mass and potentially through alterations in muscle protein turnover dynamics. This metabolic rate elevation contributes to enhanced energy expenditure and may facilitate long-term body composition maintenance.

The mechanical loading stimulus of resistance exercise activates mechanosensitive signaling pathways involving integrin receptors and focal adhesion kinases. These pathways influence glucose transporter expression, mitochondrial function, and inflammatory signaling, contributing to metabolic adaptations.

Adipokine Regulation by Exercise

Exercise influences adipokine secretion through multiple mechanisms affecting adipocyte function and adipose tissue biology. Regarding adiponectin, exercise appears to enhance its secretion through several pathways. Reductions in adipocyte size following fat loss may improve cellular function, as hypertrophied adipocytes demonstrate impaired adiponectin production. Exercise-induced decreases in systemic inflammation may alleviate inflammatory suppression of adiponectin secretion. Additionally, exercise may directly influence adiponectin gene

transcription through activation of transcription factors such as peroxisome proliferator-activated receptor gamma.

Evidence suggests exercise improves adipose tissue capillarization and reduces hypoxia, factors known to suppress adiponectin secretion. Hypoxic conditions in expanded adipose tissue activate hypoxia-inducible factor pathways that downregulate adiponectin expression. Exercise-induced vascular adaptations may reverse this suppression.

Leptin secretion closely parallels adipose tissue mass, and exercise-induced reductions primarily reflect decreased fat stores. However, some evidence indicates exercise may enhance leptin receptor expression or signaling efficiency in target tissues, potentially improving leptin sensitivity even when circulating concentrations remain elevated. This could contribute to improved energy homeostasis and appetite regulation.

Resistin regulation by exercise remains incompletely understood. Proposed mechanisms include reduced macrophage infiltration into adipose tissue, as resistin in humans is primarily secreted by immune cells rather than adipocytes. Exercise exerts anti-inflammatory effects that reduce macrophage accumulation and activation in adipose depots. Additionally, exercise may influence resistin through effects on adipocyte differentiation and function.

Combined Training Synergies

The superior metabolic outcomes observed with combined aerobic and resistance training suggest synergistic or additive effects beyond what either modality achieves alone. Potential mechanisms underlying these enhanced benefits include comprehensive targeting of different physiological systems, optimization of body composition through simultaneous fat loss and muscle gain, and complementary molecular signaling adaptations.

Aerobic training primarily targets oxidative energy systems and cardiovascular function, while resistance training emphasizes neuromuscular and structural adaptations. The combination addresses multiple metabolic dysfunction components simultaneously, producing more complete metabolic rehabilitation.

From a body composition perspective, combined training uniquely permits substantial fat reduction while maintaining or increasing muscle mass. This favorable remodeling maximizes metabolic benefits, as muscle tissue represents the primary site of glucose disposal while visceral fat contributes to metabolic dysfunction. Single modality interventions may achieve one component but not both simultaneously.

At the molecular level, aerobic and resistance exercise activate partially distinct signaling pathways that may interact synergistically. For example, aerobic exercise primarily activates AMPK pathways while resistance training emphasizes mTOR signaling. These pathways regulate different but complementary aspects of cellular metabolism, and their concurrent activation may produce enhanced adaptations.

Additionally, combined training may provide superior stimulus for mitochondrial adaptations. While aerobic exercise clearly promotes mitochondrial biogenesis, evidence suggests resistance

training also enhances mitochondrial function. The combination may optimize both mitochondrial quantity and quality.

Personalization Benefits

Personalized exercise prescription enhances intervention efficacy through multiple mechanisms. Appropriately calibrated exercise intensity ensures adequate stimulus for physiological adaptations while avoiding excessive stress that could impair recovery or increase injury risk. This optimization appears particularly important for metabolic syndrome populations who may have reduced functional capacity and multiple comorbidities.

Personalization improves adherence through consideration of individual preferences, limitations, and goals. Enhanced adherence produces greater training volumes and consistency, directly translating to superior metabolic outcomes. Research consistently demonstrates that adherence represents a critical determinant of exercise intervention success.

Individual variation in exercise responses reflects genetic factors, baseline fitness levels, and metabolic characteristics. Personalized approaches attempt to account for this heterogeneity, potentially identifying optimal exercise parameters for each individual's physiological profile. While biomarker-based precision exercise prescription remains investigational, this represents a promising direction for future optimization.

Personalization facilitates appropriate management of comorbidities and complications. For example, patients with peripheral neuropathy require specific exercise modifications to prevent foot injuries, while those with cardiovascular disease need careful intensity management and monitoring. Individualized approaches address these considerations systematically.

Clinical Significance and Practical Applications

The evidence reviewed has important implications for clinical practice and metabolic syndrome management strategies. Exercise interventions incorporating both aerobic and resistance training components should be prioritized as foundational therapy for metabolic syndrome patients. The metabolic benefits observed rival or exceed those achieved with many pharmacological interventions, without associated medication side effects or costs.

Personalized exercise prescription represents best practice, requiring initial comprehensive assessment including fitness evaluation, metabolic profiling, and comorbidity screening. Exercise intensity should be individually calibrated based on these assessments, with progressive modification guided by ongoing monitoring and response evaluation. This approach optimizes efficacy while ensuring safety.

Practical implementation considerations include ensuring access to appropriate facilities and equipment for resistance training, as well as providing adequate supervision particularly during initial program phases. Healthcare systems should consider integrating exercise specialists into metabolic syndrome care teams to facilitate evidence-based exercise prescription and monitoring.

Patient education regarding exercise importance and expected benefits enhances motivation and adherence. Clinicians should emphasize that metabolic benefits occur even with modest weight loss and may precede dramatic changes in body weight. This helps maintain motivation when weight loss plateaus.

Long-term adherence represents a critical challenge, as metabolic benefits dissipate relatively quickly after exercise cessation. Strategies to promote sustained engagement include behavioral support, goal setting, social support through group-based programs, and integration of exercise into daily routines. Technological tools such as wearable activity monitors and smartphone applications may provide useful adjuncts for self-monitoring and feedback.

The evidence supports exercise as primary prevention for metabolic syndrome development in at-risk populations. Public health initiatives promoting regular physical activity should emphasize both aerobic and resistance training components, with messaging tailored to diverse populations and accounting for barriers to participation.

Limitations and Research Gaps

Several limitations warrant consideration when interpreting this body of evidence. Study heterogeneity regarding exercise protocols, outcome measures, and population characteristics complicates direct comparisons and meta-analytic syntheses. Standardization of research methodologies would enhance evidence synthesis.

Many studies suffer from relatively small sample sizes and short intervention durations, limiting detection of modest effects and assessment of long-term sustainability. Longer studies with adequate statistical power are needed to address questions regarding optimal exercise parameters and durability of benefits.

The mechanisms underlying individual variation in exercise responses remain incompletely characterized. Further research examining genetic, epigenetic, and baseline metabolic factors that predict exercise response magnitude could inform personalized prescription approaches. Identification of exercise non-responders and alternative strategies for these individuals represents an important research priority.

The optimal combination of aerobic and resistance training regarding relative emphasis, sequencing, and periodization requires further investigation. Studies directly comparing different combined training protocols would inform prescription refinement.

Research examining exercise effects on adipokine profiles should employ standardized timing of blood sampling relative to exercise sessions, as acute exercise induces transient adipokine fluctuations that may confound interpretation of chronic training adaptations. Additionally, measurement of adipokine isoforms and receptor expression could provide mechanistic insights beyond total concentration assessment.

The cost-effectiveness of personalized exercise programs compared to standardized approaches deserves formal evaluation. While personalization appears to enhance outcomes, associated costs including comprehensive assessments and individualized monitoring require justification through economic analyses.

Finally, most research has examined metabolic syndrome patients in research settings with substantial support and monitoring. Effectiveness of exercise interventions in real-world clinical practice settings with fewer resources requires assessment through pragmatic trials.

Conclusions

Personalized rehabilitation programs incorporating combined aerobic and resistance training represent evidence-based interventions for metabolic syndrome management, producing clinically significant improvements in adipokine profiles and insulin sensitivity. These programs address multiple pathophysiological mechanisms simultaneously through complementary effects on skeletal muscle, adipose tissue, and systemic metabolism.

Aerobic training enhances oxidative capacity, promotes favorable body composition changes with preferential visceral fat reduction, and improves cardiovascular function. Resistance training increases muscle mass and metabolic rate while enhancing muscle quality and insulin signaling. The combination produces superior metabolic outcomes compared to single modality approaches.

Exercise interventions favorably modulate adipokine secretion patterns, increasing adiponectin while reducing leptin and potentially resistin concentrations. These changes contribute to improved insulin sensitivity, reduced inflammation, and enhanced metabolic homeostasis. Adipokine alterations represent one mechanism among several underlying exercise-induced metabolic improvements.

Personalization of exercise prescription based on individual functional capacity, metabolic characteristics, comorbidities, and preferences optimizes therapeutic efficacy while ensuring safety. This approach recognizes the heterogeneity within metabolic syndrome populations and accounts for individual variation in exercise responses.

Implementation of evidence-based combined exercise programs should be prioritized in clinical practice as foundational therapy for metabolic syndrome. Healthcare systems should facilitate access to appropriate exercise programming through integration of exercise specialists into care teams, provision of necessary facilities and equipment, and addressing barriers to patient participation.

Future research should focus on further elucidating mechanisms underlying exercise benefits, identifying predictors of individual response variation, optimizing exercise prescription parameters, and evaluating long-term sustainability and cost-effectiveness of different intervention approaches. Additionally, strategies to translate efficacious research interventions into effective real-world clinical practice warrant investigation.

The substantial metabolic benefits achievable through structured exercise interventions emphasize the importance of physical activity as a cornerstone of metabolic syndrome prevention and treatment. Efforts to promote population-level physical activity engagement represent critical public health priorities for addressing the growing metabolic syndrome epidemic.

References

- 1. Aadahl, M., Kjaer, M., & Jørgensen, T. (2007). Influence of time spent on TV viewing and vigorous intensity physical activity on cardiovascular biomarkers. The Inter99 study. *European Journal of Cardiovascular Prevention & Rehabilitation*, 14(5), 660-665.
- 2. Ahmadizad, S., Haghighi, A. H., & Hamedinia, M. R. (2007). Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. *European Journal of Endocrinology*, 157(5), 625-631.
- 3. Blüher, M., Bullen, J. W., Lee, J. H., Kralisch, S., Fasshauer, M., Klöting, N., ... & Mantzoros, C. S. (2006). Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: associations with metabolic parameters and insulin resistance. *European Journal of Endocrinology*, 154(1), 167-173.
- 4. Church, T. S., Willis, M. S., Priest, E. L., Lamonte, M. J., Earnest, C. P., Wilkinson, W. J., ... & Barlow, C. E. (2005). Metabolic syndrome and diabetes: prevalence and risk for cardiovascular disease using waist circumference criteria. *Nutrition, Metabolism and Cardiovascular Diseases*, 15(6), 403-411.
- 5. Cordero, A., Masiá, M. D., & Galve, E. (2014). Physical exercise and health. *Revista Española de Cardiología*, 67(9), 748-753.
- 6. Earnest, C. P., Artero, E. G., Sui, X., Lee, D. C., Church, T. S., & Blair, S. N. (2013). Maximal estimated cardiorespiratory fitness, cardiometabolic risk factors, and metabolic syndrome in the aerobics center longitudinal study. *Mayo Clinic Proceedings*, 88(3), 259-270.
- 7. Halverstadt, A., Phares, D. A., Wilund, K. R., Goldberg, A. P., & Hagberg, J. M. (2007). Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. *Metabolism*, 56(4), 444-450.
- 8. Kadoglou, N. P., Iliadis, F., Angelopoulou, N., Perrea, D., Ampatzidis, G., Liapis, C. D., & Alevizos, M. (2007). The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. *European Journal of Cardiovascular Prevention & Rehabilitation*, 14(6), 837-843.
- 9. Kelley, G. A., & Kelley, K. S. (2000). Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. *Hypertension*, 35(3), 838-843.
- 10. Klimcakova, E., Polak, J., Moro, C., Hejnova, J., Majercik, M., Viguerie, N., ... & Langin, D. (2006). Dynamic strength training improves insulin sensitivity without altering plasma levels and gene expression of adipokines in subcutaneous adipose tissue in obese men. *The Journal of Clinical Endocrinology & Metabolism*, 91(12), 5107-5112.
- 11. Kriketos, A. D., Gan, S. K., Poynten, A. M., Furler, S. M., Chisholm, D. J., & Campbell, L. V. (2004). Exercise increases adiponectin levels and insulin sensitivity in humans. *Diabetes Care*, 27(2), 629-630.
- 12. Nassis, G. P., Papantakou, K., Skenderi, K., Triandafillopoulou, M., Kavouras, S. A., Yannakoulia, M., ... & Sidossis, L. S. (2005). Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. *Metabolism*, 54(11), 1472-1479.
- 13. O'Leary, V. B., Marchetti, C. M., Krishnan, R. K., Stetzer, B. P., Gonzalez, F., & Kirwan, J. P. (2006). Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat. *Journal of Applied Physiology*, 100(5), 1584-1589.
- 14. Sillanpää, E., Laaksonen, D. E., Häkkinen, A., Karavirta, L., Jensen, B., Kraemer, W. J., ... & Häkkinen, K. (2009). Body composition, fitness, and metabolic health during strength

- and endurance training and their combination in middle-aged and older women. *European Journal of Applied Physiology*, 106(2), 285-296.
- 15. Stensvold, D., Tjønna, A. E., Skaug, E. A., Aspenes, S., Stølen, T., Wisløff, U., & Slørdahl, S. A. (2010). Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. *Journal of Applied Physiology*, 108(4), 804-810.
- 16. Tokmakidis, S. P., Zois, C. E., Volaklis, K. A., Kotsa, K., & Touvra, A. M. (2004). The effects of a combined strength and aerobic exercise program on glucose control and insulin action in women with type 2 diabetes. *European Journal of Applied Physiology*, 92(4-5), 437-442.
- 17. Willis, L. H., Slentz, C. A., Bateman, L. A., Shields, A. T., Piner, L. W., Bales, C. W., ... & Kraus, W. E. (2012). Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. *Journal of Applied Physiology*, 113(12), 1831-1837.
- 18. Yatagai, T., Nagasaka, S., Taniguchi, A., Fukushima, M., Nakamura, T., Kuroe, A., ... & Ishibashi, S. (2003). Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. *Metabolism*, 52(10), 1274-1278.
- 19. Kosimov, I., & Valiyev, R. (2025). BIOIMPEDANCEOMETRY IN ASSESSING THE HEALTH STATUS OF SECONDARY SCHOOL TEACHERS: PERSPECTIVES AND OPPORTUNITIES FOR DISEASE PREVENTION. *Journal of Applied Science and Social Science*, *I*(3), 614-622. https://inlibrary.uz/index.php/jasss/article/view/97244
- 20. Butaboev, M. T., Tyan, D. L., Valiyev, R. A., & Pulatov, S. S. (2024). Rehabilitation of patients with digestive diseases. *Ethiopian International Journal of Multidisciplinary Research*, 11(01), 246-249.
- 21. Soliyev, I. M., Kosimov, I. U., & Sodikov, S. A. (2023). NEUROREHABILITATION OF MINOR INJURIES OF THE LUMBOSACRAL SPINE DEPARTMENT IN ATHLETES WITH THE USE OF APPLIED TRAINING SWIMMING FOR STRETCHING. Экономика и социум, (2 (105)), 352-353. https://cyberleninka.ru/article/n/neurorehabilitation-of-minor-injuries-of-the-lumbosacral-spine-department-in-athletes-with-the-use-of-applied-training-swimming-for/viewer
- 22. Pulatov, S. S., & Valiev, R. A. (2023). RESPIRATORY PHYSIOTHERAPY INTERVENTIONS IN ACUTE VIRAL RESPIRATORY INFECTIONS: A COMPREHENSIVE THERAPEUTIC EXPLORATION. Экономика и социум, (12 (115)-1), 581-
- $\frac{582 \underline{https://scholar.google.com/scholar?hl=ru\&as_sdt=0\%2C5\&q=RESPIRATORY+PHYSIOTH}{ERAPY+IN}$

