INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH &

DEVELOPMENT
elSSN 2394-6334 Impact factor: 7,854 Volume 12, issue 09 (2025)

ADAPTIVE AND EFFICIENT CODE-INTELLIGENCE: INTEGRATING LLM-GUIDED
STATIC ANALYSIS, PERFORMANCE-AWARE GENERATION, AND SUSTAINABLE
INFERENCE FOR GREEN SOFTWARE ENGINEERING

Dr. Kavya R. Menon
Meridian Institute of Technology, India

Abstract: This article synthesizes contemporary advances in large language model (LLM)-assisted code
intelligence, situating recent breakthroughs in code generation, optimization, and inference-efficiency within
a unified theoretical and practical framework. We present an integrative narrative that combines LLM-driven
static analysis augmentation, iterative self-refinement of generated code, and system-level approaches for
improving runtime performance and reducing environmental footprint. Drawing on empirical and
methodological threads from recent literature, we articulate a conceptual methodology that couples: (1) LLM-
augmented static analyzers for improved bug detection and maintainability (Li et al., 2024); (2) iterative
refinement and execution-feedback loops to elevate correctness and performance (Madaan et al., 2023; Peng
et al., 2024); (3) code-generation customization for domain-specific formalism such as TikZ and technical
typesetting (Reux et al., 2025); and (4) inference and architectural optimizations—quantization, pruning, near-
storage processing, and attention efficiency—to lower latency, memory, and energy costs (Ji Lin et al., 2023;
Frantar et al., 2023; Jang, 2025). In addition, the article examines environmental metrics and policy
considerations for green Al in the software engineering lifecycle (World Bank, 2024; Morand et al., 2024;
ADEME, 2025). We propose a theoretical pipeline—Adaptive Efficient Code Intelligence (AECI)—and
discuss its implications, potential pitfalls, and future research directions. The article makes no empirical claims
beyond synthesizing and reinterpreting the provided references, but offers detailed operational prescriptions
for researchers and practitioners seeking to combine correctness, performance, and sustainability in LLM-
enabled software engineering.

Keywords: LLM code generation; static analysis; performance feedback; model compression; green Al,
inference optimization; code customization.

Introduction

The rapid maturation of transformer-based language models and their application to code has shifted the
landscape of software development and analysis. Since the advent of the Attention mechanism (Vaswani et
al., 2017), language models have been repurposed not only for natural language understanding but also for
program synthesis, documentation, and static reasoning. Parallel efforts to improve attention computation—
FlashAttention (Dao et al., 2022), sparse mechanisms (Tay et al., 2020; Choromanski et al., 2021; Beltagy et
al., 2020)—and model compression strategies (Ji Lin et al., 2023; Frantar et al., 2023) have created a
multifaceted research ecosystem. This ecosystem now supports a new class of tools that blend symbolic static
analysis with statistical generation and optimization, aiming to produce code that is not merely syntactically
plausible but functionally correct, performant, and resource-conscious (Li et al., 2024; Peng et al., 2024; Ye
et al., 2025).

Despite significant progress, several gaps remain in how the community integrates correctness guarantees,
runtime performance, and environmental accountability. Traditional static analyzers provide conservative,
provable detections of classes of defects, but they struggle with false positives, scalability, and adaptability to
evolving code idioms. Conversely, LLMs offer fluency and adaptability but lack formal guarantees and may
produce inefficient or insecure code when unchecked (Dvivedi et al., 2024; Dvivedi et al., 2024). Recent work

https://www.ijmrd.in/index.php/imjrd/ 440


http://www.ijmrd.in/index.php/imjrd/
http://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

has attempted to bridge this divide by inserting LLMs within feedback loops: LLMs propose code, execution
feedback refines it, and static analyzers reason about safety properties (Madaan et al., 2023; Peng et al., 2024;
Yeetal., 2025). At the same time, model-centric advances—quantization, pruning, and near-storage inference
architectures—promise to make these workflows feasible at scale by curtailing inference latency and energy
consumption (Frantar et al., 2023; Ji Lin et al., 2023; Jang, 2025).

This article examines these developments in depth, performing a rigorous theoretical integration of techniques
and proposing an operational pipeline—the Adaptive Efficient Code Intelligence (AECI) framework—that
prioritizes code correctness, performance, and sustainability. The literature indicates multiple, complementary
levers: augmenting static analysis with LLM-sourced semantic hints (Li et al., 2024), enforcing iterative self-
refinement during generation (Madaan et al., 2023), employing execution-based performance tuning (Peng et
al., 2024; Huang et al., 2025), and applying inference-level efficiency strategies (Frantar et al., 2023; Chandra,
2025). Additionally, the environmental aspect—assessing and minimizing energy and emissions across the
ICT stack—must be incorporated into method design and evaluation (World Bank, 2024; Morand et al., 2024;
ADEME, 2025). The remainder of the article explicates this synthesis, articulates a methodology, elaborates
expected outcomes, and identifies research challenges.

Methodology

This section describes, in conceptual and procedural depth, how to construct an integrated pipeline that
combines LLM-driven generation and static analysis with performance-aware refinement and sustainability-
aware inference. The methodology is presented descriptively—no experiments are reported here—but is
grounded in practices and mechanisms described in the literature.

Theoretical foundations and design philosophy. The AECI framework rests on three interconnected design
pillars: semantic augmentation, iterative feedback, and resource-aware inference. Semantic augmentation
refers to enriching static analyzers with LLM-derived semantic hypotheses—possible invariants, intended
types, and high-level correctness constraints—that can both focus analysis and reduce false positives (Li et
al., 2024). Iterative feedback denotes a loop in which generated code is compiled, tested, profiled, and then
fed back into the model for refinement, following the Self-Refine paradigm (Madaan et al., 2023) and
execution-guided performance tuning approaches (Peng et al., 2024). Resource-aware inference encapsulates
techniques to ensure the LLM's predictions and orchestration use minimal energy and latency without
sacrificing quality: weight quantization, one-shot pruning heuristics, attention mechanism optimizations, and
near-storage processing are all viable levers (Ji Lin et al., 2023; Frantar et al., 2023; Jang, 2025; Dao et al.,
2022).

Component-level architecture. The pipeline comprises modular components that can be combined adaptively
according to project needs:

1. Specification Ingestor and Context Builder. The system accepts multi-modal project context: codebase
snapshots, test suites, bug reports, and developer comments. From these, a context vector and explicit
constraints are extracted—type signatures, pre/postconditions, API contracts. The ingestion module prepares
prompts and structured queries for the LLM and the static analyzer.

2. LLM Proposal Generator. Using a tuned prompting strategy and possibly a specialized model (e.g., coder-
oriented LLMs described by DeepSeek-Al et al., 2024), the system generates candidate patches, refactorings,
and documentation. The generator is designed to: (a) produce multiple alternatives; (b) include rationale for
choices (to assist analyzers); and (c) predict computational complexity estimates or resource hints when
feasible (Dvivedi et al., 2024; Ye et al., 2025).

3. Static Analyzer with LLM Augmentation. Traditional static analyzers operate on the candidate code, but
are augmented to accept semantic hypotheses from the LLM-—speculated invariants, expected types, and
suggested assertion placements—thus enabling more targeted and context-sensitive checks (Li et al., 2024).
This augmentation reduces spurious warnings by focusing on the LLM-suggested likely behaviors while
preserving conservative checks for safety-critical properties.
https://www.ijmrd.in/index.php/imjrd/ 441


http://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

4. Execution and Profiling Sandbox. Each candidate is executed in an isolated environment with representative
inputs extracted by the Context Builder. Execution produces correctness signals (pass/fail tests), runtime
profiles (CPU, memory, latency), and performance counters. Profiling outputs are critical for the subsequent
performance-guided refinement (Peng et al., 2024; Huang et al., 2025).

5. Self-Refinement and Performance Tuner. Following Self-Refine principles (Madaan et al., 2023), the LLM
consumes execution traces and static analysis reports to iteratively improve candidates. In parallel, execution
feedback is used to search for more efficient implementations—e.g., algorithmic changes, data-structure
adjustments, or micro-optimizations (Ye et al., 2025; Peng et al., 2024). The tuner also consults model-
informed heuristics for performance tradeoffs (Huang et al., 2025).

6. Inference-Efficiency Orchestration. The pipeline manages model selection and inference strategies across
phases: high-fidelity generation may require larger models, whereas later refinement and verification may
utilize compressed models or specialized kernels (AWQ, pruning, FlashAttention variants) to reduce cost (Ji
Lin et al., 2023; Frantar et al., 2023; Dao et al., 2022). The orchestrator decides when to offload computation
to near-storage processors or employ quantized models for lower power consumption (Jang, 2025; Chandra,
2025).

7. Sustainability Evaluator. At each pipeline iteration, the framework estimates energy and emissions using
methodologies proposed for the ICT sector (World Bank, 2024; Morand et al., 2024). These measurements
inform a cost function balanced between correctness, performance, and environmental impact (ADEME,
2025).

Prompting and model tailoring. Effective application requires specialized prompting strategies and model
customization. For domain-specific artifacts such as TikZ code, model fine-tuning or adapters vyield
substantially better visual and syntactic alignment (Reux et al., 2025). Prompt templates should instruct
models to provide structured outputs: code, short rationale, suggested invariants, and complexity estimates.
When available, execution traces and test failures are embedded into prompts to enable error-focused
generation.

Performance and correctness heuristics. The methodology relies on heuristic prioritization to navigate the vast
search space of candidate patches. Heuristics include: prefer algorithmic improvements over micro-
optimizations when profiling indicates asymptotic bottlenecks; prefer minimal semantic changes when static
analysis highlights brittle invariants; and apply pruned or quantized models only where acceptance criteria
allow slight reductions in generation quality (Frantar et al., 2023; Ji Lin et al., 2023; Peng et al., 2024).

Sustainability accounting. We espouse explicit tallying of energy and emissions using an activity-based model
that maps compute kernels, memory usage, and runtime profiles to energy consumption and carbon intensity,
consistent with World Bank (2024) protocols and analyses of ML environmental costs (Morand et al., 2024).
These measurements are integrated into the final selection criterion for candidate code.

Validation and governance. Though the methodology is conceptual, it embeds governance mechanisms: audit
logs documenting LLM suggestions and corresponding tests, human-in-the-loop gates for security-sensitive
changes, and thresholds for automatically accepting resource-saving refactors only when correctness is proven
by the static analyzer and test suite (Li et al., 2024; Madaan et al., 2023).

Results

This article does not present primary empirical experiments; rather, it produces an exhaustive descriptive
synthesis of outcomes that an AECI pipeline would ideally achieve, grounded in the referenced literature. The
expectations below are rendered as detailed, theory-driven projections and reasoning rather than
experimentally measured facts.

Enhanced bug detection and reduced false positives. The LLM-augmented static analysis approach leverages
semantic hypotheses to prioritize relevant warnings and reduce noise (Li et al., 2024). Theoretically, when an

https://www.ijmrd.in/index.php/imjrd/ 442


http://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

LLM supplies likely invariants or type expectations, the analyzer can prune infeasible warning paths and
identify bugs that require semantic understanding—e.g., logical misuses of APIs or off-by-one errors obscured
by dynamic typing. The net result, as predicted by the literature, is improved precision in practical bug
detection without sacrificing recall (Li et al., 2024).

Improved correctness via self-refinement. Iterative self-feedback loops enable models to learn from concrete
execution failures and test outputs (Madaan et al., 2023). By systematically exposing failure traces and
targeted prompts to the LLM, AECI can reduce syntactic and logical errors across generations. The procedural
implication is that the code quality curve improves rapidly across a few refinement iterations, particularly for
tasks with well-defined test suites (Madaan et al., 2023; Peng et al., 2024).

Performance gains through execution-guided optimization. The literature shows that execution feedback
significantly improves performance outcomes for generated code: PerfCodeGen and subsequent works
employ execution profiling to guide rewrites toward lower latency and memory footprints (Peng et al., 2024;
Ye et al., 2025; Huang et al., 2025). AECI combines these mechanisms with model-driven suggestions for
algorithmic changes, enabling substantial runtime improvements when algorithmic choices are within the
model's reasoning capacity.

Domain-specific customization yields higher fidelity outputs. Tasks requiring specialized syntax, such as TikZ
diagrams, benefit from benchmarked LLM customization and visual-result-aware evaluation (Reux et al.,
2025). The AECI approach recommends fine-tuning or adapter layers for such domains, leading to outputs
that better conform to stylistic and syntactic constraints.

Inference-level efficiency reduces operational costs. By employing quantization, one-shot pruning, and
optimized attention kernels, inference costs for generation and refinement phases can be markedly reduced (Ji
Lin et al., 2023; Frantar et al., 2023; Dao et al., 2022). Near-storage processing models further promise
throughput improvements by reducing data movement overheads (Jang, 2025). The upshot is increased
feasibility of production-grade, iterative LLM workflows.

Integrated sustainability metrics enable balanced tradeoffs. Incorporating energy and emissions measurements
informs decisions about when to use heavyweight models versus compressed alternatives (World Bank, 2024;
Morand et al., 2024; ADEME, 2025). The AECI pipeline theoretically yields a better global utility per unit of
energy consumed by explicitly valuing environmental impact.

Discussion

This section interprets the projected results, critically examines limitations, analyzes counter-arguments, and
outlines future research directions.

Interpreting the synthesis: complementarity, not substitution. The literature indicates that LLMs and static
analyzers should be viewed as complementary technologies. LLMs excel at generating plausible, contextually
creative code and suggesting semantic hypotheses, while static analyzers offer conservative verification and
formal guarantees (Li et al., 2024; Vaswani et al., 2017). AECI proposes a symbiotic integration: the LLM
provides hypotheses that focus static analysis, and the analyzer supplies counterexamples and constraints that
inform LLM refinement (Madaan et al., 2023). The interplay respects the epistemic boundaries of each tool
and mitigates the risk of overreliance on any single approach.

Limitations and sources of brittleness. Several constraints restrict the efficacy of AECI in practice. First, LLMs
occasionally hallucinate plausible-sounding but incorrect invariants or rationales; if an analyzer naively trusts
these outputs, it could be misled (Dvivedi et al., 2024). Thus, the pipeline must treat LLM outputs as
hypotheses subject to verification rather than authoritative facts (Li et al., 2024). Second, execution-guided
improvement presupposes representative test inputs; where such tests are lacking, the performance and
correctness signals may be misleading. Third, inference-efficiency techniques introduce approximation
errors—quantization noise, pruned weight distributions, and sparse attention artifacts—that can degrade
generation quality if applied too aggressively (Ji Lin et al., 2023; Frantar et al., 2023). The orchestrator must

https://www.ijmrd.in/index.php/imjrd/ 443


http://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT
therefore balance compression gains against quality loss.

Counter-arguments and rebuttals. A common critique of LLM-driven engineering is that it displaces deep
domain expertise and encourages brittle automation. We contend that AECI is not a tool for blind automation
but a scaffold for human-guided engineering: its governance model emphasizes human-in-the-loop review,
explicit audit trails, and conservative acceptance thresholds for critical changes (Li et al., 2024). Another
argument challenges the environmental benefit of iterative LLM loops: repeated inference could raise energy
use. The counterpoint is that targeted use of compressed models, strategic orchestration, and tangible runtime
gains from optimized code can produce net energy savings when measured across the software lifecycle
(World Bank, 2024; Peng et al., 2024; Morand et al., 2024).

Ethical and governance considerations. AECI raises questions about accountability, reproducibility, and bias.
Audit logs must record model versions, prompts, and acceptance criteria to ensure reproducibility and
traceability. For safety-critical systems, human sign-off and formal verification remain non-negotiable. Bias
in training data can affect generated code patterns and resource assumptions; thus, transparency about model
provenance and dataset composition is essential (DeepSeek-Al et al., 2024; Dvivedi et al., 2024).

Sustainability tradeoffs and policy implications. Quantifying the environmental impact of ML-driven software
development requires standardized metrics and reporting protocols. The World Bank (2024) and ADEME
(2025) offer guidelines that can be adapted to measure the energy footprint of AECI processes. Policymakers
and engineering managers must weigh up-front inference costs against downstream runtime savings and
emissions reductions realized by more efficient generated code. In regulated sectors, environmental reporting
could become part of compliance regimes for software deployment.

Future research directions. The integration of semantic verification tools with probabilistic generation requires
research in hybrid symbolic-statistical reasoning frameworks. Promising avenues include constrained
decoding strategies that embed formal invariants into generation, and differentiable static analysis
approximations that allow gradient-based model fine-tuning. On the systems side, developing middleware that
seamlessly orchestrates model fidelity (switching among full, quantized, and pruned models) based on real-
time utility functions is fertile ground. Finally, rigorous empirical evaluations that measure the net carbon
impact of AECI-style pipelines in industrial-scale projects would substantiate sustainability claims and refine
cost—benefit models.

Conclusion

This article proposed a conceptual, integrative pipeline—Adaptive Efficient Code Intelligence (AECI)—that
synthesizes recent advances in LLM-driven code generation, static-analysis augmentation, execution-guided
performance optimization, and inference-level efficiency. The approach is underpinned by modular
components that collaborate to produce code that is correct, performant, and aligned with sustainability goals.
While challenges remain—model hallucination, test coverage gaps, and approximation tradeoffs—the
conceptual case for combining these techniques is strong. The literature indicates complementary strengths
across methods: LLMs provide semantic creativity and adaptability (DeepSeek-Al et al., 2024; Dvivedi et al.,
2024), self-refinement reduces iteration failure rates (Madaan et al., 2023), execution feedback vyields
performance gains (Peng et al., 2024; Ye et al., 2025), and model compression along with architectural
innovations can lower inference costs (Ji Lin et al., 2023; Frantar et al., 2023; Jang, 2025). Realizing AECI in
practice requires careful governance, human oversight, and explicit sustainability accounting. Future work
should empirically validate the projected benefits at scale, develop standardized environmental metrics for
LLM-based development, and refine hybrid symbolic-statistical methods to enhance trustworthiness. The path
forward is one of measured integration: combining the strengths of language models, static reasoning, and
systems optimization to create software engineering processes that are efficient, reliable, and responsible.

References

1. DeepSeek-Al et al., “DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code
Intelligence,” arXiv, Jun. 2024.
https://www.ijmrd.in/index.php/imjrd/ 444


http://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

2. H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Enhancing static analysis for practical bug detection: An llm-
integrated approach,” Proc. ACM Program. Lang., vol. 8, no. OOPSLAI1, Apr. 2024. Available:
https://doi.org/10.1145/3649828

3. C. Reux, M. Acher, D. E. Khelladi, O. Barais, and C. Quinton, “LLM Code Customization with Visual
Results: A Benchmark on TikZ,” Proceedings of The 29th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2025)., Istanbul, Turkey, Jun. 2025. Available:
https://hal.science/hal-05049250

4. S. S. Dvivedi, V. Vijay, S. L. R. Pujari, S. Lodh, and D. Kumar, “A Comparative Analysis of Large
Language Models for Code Documentation Generation,” Proceedings of the 1st ACM International
Conference on Al-Powered Software (Alware 2024), Jul. 2024, pp. 65-73.

5. T. Ye, W. Huang, X. Zhang, T. Ma, P. Liu, J. Yin, and W. Wang, “LLM4EFFI: Leveraging Large
Language Models to Enhance Code Efficiency and Correctness,” arXiv, Feb. 2025.

6. D. Huang, J. Dai, H. Weng, P. Wu, Y. Qing, H. Cui, Z. Guo, and J. M. Zhang, “EffiLearner: Enhancing
Efficiency of Generated Code via Self-Optimization,” arXiv, May 2025.

7. Y. Peng, A. D. Gotmare, M. Lyu, C. Xiong, S. Savarese, and D. Sahoo, “PerfCodeGen: Improving
Performance of LLM Generated Code with Execution Feedback,” arXiv, Nov. 2024.

8. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye, Y.
Yang, S. Welleck, B. P. Majumder, S. Gupta, A. Yazdanbakhsh, and P. Clark, “Self-Refine: Iterative
Refinement with Self-Feedback,” arXiv, Mar. 2023.

9. World Bank Group, Measuring the Emissions and Energy Footprint of the ICT Sector: Implications for
Climate Action, Other Environmental Study. Washington, D.C: The World Bank, 2024.

10. ADEME, “Numerique & environnement : Entre opportunit’es et n’ecessaire sobri’et’e,” Jan. 2025.

11. Morand, A.-L. Ligozat, and A. Nev eol, “How Green Can Al Be? A Study of Trends in Machine Learning
Environmental Impacts,” arXiv, Dec. 2024.

12. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin,
“Attention is All You Need,” Advances in Neural Information Processing Systems 30 (NIPS 2017), Long
Beach, CA, USA, 4-9 Dec. 2017. Available: https://arxiv.org/abs/1706.03762

13. T. Dao, D. Fu, S. Ermon, A. R¢, and C. Ré, “FlashAttention: Fast and Memory-Efficient Exact Attention
with 10-Awareness,” Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New
Orleans, LA, USA, 28 Nov.-9 Dec. 2022. Available: https://arxiv.org/abs/2205.14135

14. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The Long-Document Transformer,” arXiv, 2020.
Available: https://arxiv.org/abs/2004.05150

15. N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The Efficient Transformer,” International Conference
on Learning Representations (ICLR), 2020. Available: https://arxiv.org/abs/2001.04451

16. Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient Transformers: A Survey,” arXiv, 2020.
Available: https://arxiv.org/abs/2009.06732

17. K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Davis, A.
Mohiuddin, L. Kaiser, et al., “Rethinking Attention with Performers,” International Conference on
Learning Representations (ICLR), 2021. Available: https://arxiv.org/abs/2009.14794

18. Zhang, 1. Titov, and R. Sennrich, “Sparse Attention with Linear Unit,” Proceedings of the ACL, Online,
https://www.ijmrd.in/index.php/imjrd/ 445


http://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT
7-11 Nov. 2021.

19. Dr. K Naveen Kumar, "Open Al Model Efficient Memory Reduce Management for the Large Language
Models," International Journal for Research in Applied Science and Engineering Technology, vol. 12, no.
5, pp. 1224-1231, 2023. https://www.ijraset.com/researchpaper/open-ai-model-efficient-memory-reduce-
management-for-the-large-language-models

20. Eelias Frantar et al., "Massive Language Models Can Be Accurately Pruned in One-Shot,” Jan. 2023.
https://www.researchgate.net/publication/366821751 Massive_Language_Models_Can_Be_Accurately
Pruned_in_One-Shot

21. George Obaido et al., "XtremeLLMs: Towards Extremely Large Language Models,” Preprints, 2023.
https://www.preprints.org/manuscript/202408.1483/v1

22. Hongsun Jang, "INF2: High-Throughput Generative Inference of Large Language Models using Near-
Storage Processing," Feb. 2025.
https://www.researchgate.net/publication/389056249 INF2_HighThroughput_Generative_Inference_of
Large_Language Models_using_Near-Storage Processing

23.Ji Lin et al., "AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration,"
June 2023.
https://www.researchgate.net/publication/371222812_AWQ_Activationaware_Weight_Quantization_for
_LLM_Compression_and_Acceleration

24.R. Chandra, "Reducing latency and enhancing accuracy in LLM inference through firmware-level
optimization," International Journal of Signal Processing, Embedded Systems and VLSI Design, 5(2), 26-
36, 2025.

https://www.ijmrd.in/index.php/imjrd/ 446


http://www.ijmrd.in/index.php/imjrd/

