
447 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract: This paper presents a comprehensive framework for integrating security into modern continuous 

delivery and operations lifecycles by synthesizing established DevOps/DevSecOps practices with emergent 

ideas in chaos engineering, immutable infrastructure, and zero-trust secrets management. Motivated by the 

limitations of traditional security approaches when applied to agile and continuous environments, the work 

surveys core practices (continuous delivery, automated testing, infrastructure as code), identifies systemic 

gaps in threat-driven automation, and proposes a cohesive operational model—termed ChaosSecOps—that 

places controlled, automated disruption and immutable security controls at the center of risk mitigation and 

resilience building. The methodology described is conceptual and prescriptive: it draws on prior empirical and 

theoretical work about automation in pipelines, vulnerability scanning, cultural transformation for security 

ownership, and threat intelligence integration to produce an operational playbook for practitioners and a 

research agenda for evaluators. Key contributions include (1) articulation of principles that reconcile rapid 

release velocity with continuous assurance (traceable, automated security gates, ephemeral pipelines, and 

immutable secrets), (2) a taxonomy of security test modalities and their placement in the pipeline, and (3) 

concrete recommendations for measuring security resilience using chaos-inspired experiments rather than 

solely relying on vulnerability counts. The paper concludes by discussing limitations, potential pitfalls 

(including over-reliance on automation and cultural barriers), and concrete directions for future work, 

including empirical evaluation, tooling gaps, and policy implications. 

 

Keywords: DevSecOps; Chaos Engineering; Continuous Delivery; Immutable Infrastructure; Secrets 

Management; Pipeline Security; Threat Intelligence. 

 

Introduction 

Modern software development increasingly relies on continuous delivery and continuous integration practices 

to meet market demands for rapid feature delivery and iterative improvement (Humble & Farley, 2010; Kim 

et al., 2016). While these practices improve velocity and operational responsiveness, they create friction with 

traditional security approaches that were designed for slower, gate-based lifecycles (Kim & McGraw, 2019; 

Anderson & Moore, 2020). Traditional security models—heavy reliance on manual code review, periodic 

penetration testing, and late-stage security signoffs—are poorly aligned with pipelines that produce frequent, 

automated releases (Kim & McGraw, 2019; Patel & Kumar, 2021). This misalignment results in delayed 

release cycles, surface-area drift, and, crucially, a persistent gap between deployment velocity and assurance 

fidelity (Anderson & Moore, 2020; Davis & Harris, 2022). 

In response to these pressures, the field has coalesced around DevSecOps: the integration of security into 

every stage of the development and operations lifecycle (Patel & Kumar, 2021; Russo & Russo, 2021). 

DevSecOps emphasizes automation of testing, continuous monitoring, and cultural shifts that make security a 

shared responsibility (Johnson & Harris, 2021; White & Mitchell, 2021). While this movement has delivered 

concrete benefits—improved vulnerability scanning, earlier detection of issues, and faster remediation—

challenges remain. Automated testing tools can be incomplete or flawed if misconfigured, configuration drift 

undermines scanning, and cultural transformation is slow and nonuniform (Smith & Lee, 2021; Davis & 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & 

DEVELOPMENT 
eISSN 2394-6334 Impact factor: 7,854 Volume 12, issue 09 (2025) 

ADAPTIVE CHAOSSECOPS: INTEGRATING CONTINUOUS SECURITY, IMMUTABLE 

INFRASTRUCTURE, AND CONTROLLED CHAOS FOR RESILIENT SOFTWARE DELIVERY 

 

Dr. Elias V. Kozlov 

Laboratory for Distributed Systems and Resilience Engineering, St. Petersburg State University, Russia 

 

 

http://www.ijmrd.in/index.php/imjrd/
http://www.ijmrd.in/index.php/imjrd/


448 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

Harris, 2022; White & Mitchell, 2021). Moreover, many pipelines remain brittle in the face of real-world 

attack scenarios that exploit configuration mistakes, secret leakage, or run-time dependencies (Viega & 

McGraw, 2022; The Docker Team, 2022). 

Separately, chaos engineering has matured as a discipline focused on proactively inducing faults in production 

or pre-production environments to study system resiliency and recovery behaviors (Loukides, 2023; Rinehart 

& Shortridge, 2021). Chaos experiments illuminate latent failure modes and force teams to design for graceful 

degradation. Recent conceptual advances argue that controlled chaos can extend beyond availability and 

performance into security: intentionally exercising attack-like conditions to measure detection, containment, 

and recovery—what some emerging works label ChaosSecOps (Mahimalur, 2025c; Mahimalur, 2025a). 

Parallel to this, proposals for immutable secrets management and ephemeral pipelines seek to reduce the attack 

surface by limiting the lifetime and mutability of sensitive credentials (Mahimalur, 2025b). 

This paper synthesizes these strands—DevSecOps automation, vulnerability management, chaos engineering, 

and immutable control planes—into a unified, prescriptive approach for building resilient, secure delivery 

systems. We begin by summarizing the technical and cultural limitations identified in the literature (Kim & 

McGraw, 2019; Anderson & Moore, 2020; Johnson & Harris, 2021). We then detail the conceptual 

architecture of ChaosSecOps, describing design principles, pipeline instrumentation, testing taxonomies, and 

measuring resilience. Finally, we discuss practical considerations, limitations, and a prioritized research 

agenda to empirically validate and refine the approach. 

Methodology 

This work is conceptual, integrative, and prescriptive: its methods are synthetic analysis of domain literature, 

cross-referential design reasoning, and normative engineering prescriptions grounded in prior empirical 

findings. The methodology proceeds in three stages. 

1. Literature Synthesis and Gap Analysis. We systematically reviewed the provided corpus of seminal 

and contemporary works spanning continuous delivery, DevOps/DevSecOps practices, automation testing, 

chaos engineering, and specialized topics such as immutable secrets and threat intelligence integration 

(Humble & Farley, 2010; Kim et al., 2016; Smith & Lee, 2021; Loukides, 2023; Mahimalur, 2025a,b,c; Malik, 

2025). From this corpus we identified recurring themes, validated recommendations, and tensions—

particularly the mismatch between speed-focused pipelines and assurance activities (Kim & McGraw, 2019; 

Anderson & Moore, 2020). Each major claim drawn from the literature is explicitly cited throughout. 

2. Principles and Architecture Derivation. Using the gaps identified, we derived a set of guiding 

principles for integrating continuous security with resilience testing. These principles prioritize immutability 

(reduce mutable credential and configuration surfaces), automation with verifiable attestations (machine-

actionable gates), and controlled disruptions (chaos experiments designed to exercise detection and recovery). 

Principles were selected because they directly address the identified failure modes: secret sprawl, 

configuration drift, incomplete test coverage, and cultural barriers to security ownership (White & Mitchell, 

2021; Mahimalur, 2025b; Smith & Lee, 2021). 

3. Operational Playbook and Measurement Framework. Building from principles, we constructed an 

operational playbook—textual, procedural guidance that maps specific security tests, tooling placements, and 

monitoring actions into pipeline stages (commit, build, integration, staging, production). We also propose a 

measurement framework for assessing resilience: composite metrics that combine time-to-detect, time-to-

respond, restored-service fidelity, and the ability of the system to preserve confidentiality, integrity, and 

availability under controlled fault/security experiments (Davis & Harris, 2022; Loukides, 2023). Where prior 

literature offered measurements (e.g., vulnerability counts, mean time to remediation), we integrate and 

critique them, recommending augmentations to better capture real-world security posture (Patel & Kumar, 

2021; Malik, 2025). 

The objective is prescriptive rather than purely empirical: the framework is intended to guide practitioners and 

researchers toward concrete experiments and implementations that can be evaluated in subsequent work. 

http://www.ijmrd.in/index.php/imjrd/


449 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

Results 

Because this is a design and synthesis paper rather than an empirical experiment, the “results” are the 

structured outcomes of our methodology: (1) a gap analysis substantiating the need for integrated 

ChaosSecOps practices; (2) a principles-driven architecture; (3) a detailed pipeline playbook; and (4) a 

resilience measurement framework. Each of these outputs is described below in depth. 

Gap analysis: The reviewed literature consistently highlights that traditional security controls do not scale to 

continuous, automated delivery models (Kim & McGraw, 2019; Anderson & Moore, 2020). Traditional 

models often rely on static testing checkpoints and manual approvals that are incompatible with frequent 

deployments and infrastructure change (Kim & McGraw, 2019). Automated security testing tools—static 

analysis, dynamic scanning, and dependency checks—are valuable but require careful configuration and 

continuous maintenance; otherwise, they produce noise and blind spots (Smith & Lee, 2021; Davis & Harris, 

2022). Cultural factors also present a major barrier: shifting responsibility for security from a centralized team 

to product teams requires training, incentives, and leadership support (Johnson & Harris, 2021). 

Principles and architecture: From these gaps we distilled five core principles: 

1. Shift-left with verifiable automation. Bring security earlier in the lifecycle by instrumenting the 

pipeline with automated, policy-driven checks that produce machine-verifiable attestations for successful 

validation (Patel & Kumar, 2021; Smith & Lee, 2021). 

2. Immutable secrets and ephemeral credentials. Reduce risk of credential leakage by minimizing 

credential lifetime and ensuring secrets are handled by immutable, auditable systems rather than embedded in 

mutable images or environment variables (Mahimalur, 2025b; The Docker Team, 2022). 

3. Defense-in-depth through layered testing modalities. Use a taxonomy of tests—unit-level secure 

coding checks, build-time dependency and license analyses, integration-level dynamic analysis, and runtime 

behavioral monitoring—to create overlapping coverage (Viega & McGraw, 2022; White & Mitchell, 2021). 

4. Controlled, measurable chaos. Intentionally inject security-relevant faults—such as secret revocation, 

service degradation, and simulated lateral-movement scenarios—into staging and production-like 

environments to measure detection and recovery rather than hoping scanning alone suffices (Loukides, 2023; 

Mahimalur, 2025c). 

5. Threat-intelligence driven gating. Integrate curated threat intelligence feeds and context-aware 

anomaly detection into pipeline gates so that builds can be blocked or flagged when new indicators match 

dependencies or runtime behaviors (Malik, 2025; Patel & Kumar, 2021). 

Operational playbook: The playbook translates principles into concrete placements and tests across a canonical 

pipeline. Key recommendations include: 

● Pre-commit and local developer tooling. Enforce linters, secure coding static analyzers, and 

dependency policy checks integrated as pre-commit hooks and developer IDE plugins so that noisy-but-

important issues are found before code is pushed (Smith & Lee, 2021; Viega & McGraw, 2022). 

● Build-time attestations and SBOMs. During the build stage, produce signed Software Bill of Materials 

(SBOMs), dependency vulnerability attestations, and license compliance checks. Store attestations in an 

immutable artifact repository for later audit and pipeline gating (White & Mitchell, 2021; The Docker Team, 

2022). 

● Integration-stage dynamic testing. Execute automated dynamic application security testing (DAST), 

fuzzing where appropriate, and composition analysis against integrated services. Correlate findings with 

SBOMs to prioritize true positives (Smith & Lee, 2021; Davis & Harris, 2022). 

http://www.ijmrd.in/index.php/imjrd/


450 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

● Staging chaos experiments and secrets-testing. In staging or production-like environments, run 

controlled chaos scenarios that include secrets rotation failure, privilege revocation, and simulated lateral 

movement to measure detection and automated rollback efficacy (Loukides, 2023; Mahimalur, 2025a,c). 

● Runtime monitoring and canary gates. Use canary deployments with behavior-based anomaly 

detectors fed by threat intelligence. If canary telemetry violates policy or trigger thresholds, automatically halt 

rollout and initiate remediation orchestration (Kim et al., 2016; Malik, 2025). 

Measurement framework: The proposed metrics focus on resilience and operational security efficacy rather 

than raw vulnerability counts: 

● Mean Time to Detection (MTTD) under chaos. Measure how quickly detection systems flag simulated 

attacks or induced faults. 

● Mean Time to Recovery (MTTR) after forced failure. Evaluate time to restore baseline service and 

integrity after an injected security incident. 

● Attestation Coverage. Percentage of artifacts and pipeline stages that produce verifiable attestations 

tied to identity and provenance. 

● Secrets Exposure Rate. Number of secrets found in artifacts or logs per thousand builds, normalized 

by pipeline activity. 

● False Positive/Negative Rates for automated tests. To track test quality and tuning needs (Smith & 

Lee, 2021; Davis & Harris, 2022). 

Collectively, these outputs define a coherent architecture intended for practical adoption and empirical study. 

Discussion 

The foregoing synthesis identifies a practical path forward for bridging the velocity–assurance gap that plagues 

modern software delivery: orchestrate immutable controls, integrate layered automated testing, and embrace 

chaos experiments to validate security posture continuously. Below we analyze the theoretical implications, 

discuss counter-arguments, describe limitations, and propose a research and evaluation agenda. 

Theoretical implications: Architecturally, ChaosSecOps reframes security from a compliance- and checklist-

based activity to a systemic property measured by response and recovery under stress. This shift is significant: 

it transforms security from a binary “pass/fail” checkpoint into a continuous dimension of system behavior, 

akin to latency or throughput. The shift-left principle remains important (Patel & Kumar, 2021; Smith & Lee, 

2021), but when combined with immutable attestations and dynamical stress-testing, it provides both 

preventive and detective assurances: prevention via static verification and secrets hardening; detection and 

recovery via chaos-engineered experiments. The notion of "attestation coverage" also aligns with growing 

regulatory and industry expectations for supply-chain transparency, such as SBOM generation and provenance 

(White & Mitchell, 2021; The Docker Team, 2022). 

Cultural and organizational dynamics: Technical changes alone will not guarantee success. The literature 

emphasizes the need for cultural transformation—security must be a shared responsibility with clear incentives 

and feedback loops (Johnson & Harris, 2021). ChaosSecOps imposes additional organizational changes: teams 

must be comfortable running controlled faults, consuming attestations, and responding to automated halts in 

deployment. Resistance can be expected from risk-averse stakeholders who historically prioritized stability 

over experimentation (Kim & McGraw, 2019). To address this, leadership must champion a measured 

rollout—start with non-critical systems, invest in developer education, and expose value through shortened 

remediation cycles and improved operational confidence (Kim et al., 2016; Johnson & Harris, 2021). 

Counter-arguments and trade-offs: Critics may argue that intentionally introducing chaos increases risk, 

http://www.ijmrd.in/index.php/imjrd/


451 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

particularly in production environments. This is a valid concern: poorly designed chaos experiments can 

worsen outages or create attack vectors. The literature recommends progressive experimentation—begin in 

isolated staging environments, use traffic mirroring and canaries, and require explicit runbooks and automated 

rollback strategies before moving experiments to production (Loukides, 2023; Rinehart & Shortridge, 2021). 

Another trade-off is the complexity and cost of implementing immutable secrets and ephemeral pipelines; 

organizations with legacy tooling may find the transition expensive. However, this cost must be compared 

against the expected reduction in breach likelihood and the operational cost of responding to secret leaks and 

configuration drift (The Docker Team, 2022; Mahimalur, 2025b). 

Limitations of automation and toolchains: Automation is powerful but not panacea. Automated scanners 

produce false positives and negatives that can either desensitize teams or miss contextual threats (Smith & 

Lee, 2021; Davis & Harris, 2022). There is also the risk of “automation sprawl” where multiple overlapping 

tools produce inconsistent signals; the architecture must emphasize signal aggregation, triage prioritization, 

and clear ownership. The role of human judgment remains critical for interpreting complex security contexts 

and for approving high-risk exceptions. 

Measuring security through chaos: One of the paper’s main propositions is measuring security posture by 

observing system responses to controlled disruptions. This approach has advantages: it validates telemetry, 

exercises incident response playbooks, and provides evidence of systemic resiliency (Loukides, 2023; 

Mahimalur, 2025c). However, operationalizing such measurement requires careful experimental design and 

ethical oversight—particularly if experiments touch customer data or critical services. Researchers should 

adopt safety constraints, ensure experiments are reversible, and make conservative assumptions in shared 

multi-tenant environments. 

Threat intelligence integration: Malik (2025) and others argue for integrating threat intelligence directly into 

pipeline gating so that builds correlated with newly discovered indicators can be flagged or blocked. This 

introduces the possibility of dynamic policy updates but also creates dependencies on external feeds that vary 

in quality. Effective use requires filtering, contextual enrichment, and careful mapping to SBOMs and runtime 

telemetry to avoid noise. Additionally, privacy and compliance concerns may arise when consuming or sharing 

threat telemetry—legal teams must be engaged. 

Operational recommendations: For practitioners seeking to adopt ChaosSecOps, we recommend a phased 

approach: 

1. Baseline hardening. Implement immediate, low-cost hardening measures: pre-commit linters, 

dependency scanning, and SBOM generation. These remedy the highest volume, lowest-complexity defects 

(Smith & Lee, 2021; White & Mitchell, 2021). 

2. Immutable secrets pilot. Deploy an immutable secrets manager for a subset of services and enforce 

ephemeral credentials for CI runners. Measure secrets exposure rate during trial and tune policies (Mahimalur, 

2025b; The Docker Team, 2022). 

3. Attestation and provenance. Introduce artifact signing and attestation storage. Use these attestations as 

inputs for later pipeline gates and audits (White & Mitchell, 2021). 

4. Controlled chaos on non-critical paths. Run chaos experiments in staging environments first to validate 

detection and recovery before expanding scope. Develop clear rollback mechanisms and visibility dashboards 

(Loukides, 2023; Mahimalur, 2025c). 

5. Threat intelligence integration. When the above foundations are stable, integrate curated threat feeds 

that are mapped to SBOMs and runtime telemetry, and build policy-driven gating for high-confidence matches 

(Malik, 2025). 

Research agenda: To validate and strengthen ChaosSecOps, we recommend the following research directions: 

http://www.ijmrd.in/index.php/imjrd/


452 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

● Empirical evaluation of chaos-driven security testing. Controlled studies that measure MTTD and 

MTTR improvements when chaos experiments are introduced versus control groups. 

● Efficacy of immutable secrets. Quantitative analysis of secret leakage incidents and recovery times 

pre- and post-immutable secret adoption. 

● Cost-benefit analysis of attestation coverage. Economic modeling to evaluate implementation costs 

against reductions in incident-handling and mean-time-to-remediate. 

● Tooling interoperability. Development of standards for attestations, SBOM formats, and chaotic 

experiment descriptions to reduce vendor lock-in and encourage ecosystem growth (White & Mitchell, 2021; 

The Docker Team, 2022). 

● Human factors study. Research into cultural adoption patterns, incentives, and training efficacy for 

distributed security ownership (Johnson & Harris, 2021). 

Ethical and regulatory considerations: As pipelines grow more autonomous and experiments simulate attacks, 

legal and ethical frameworks become essential. Experiments that could affect customer data, availability for 

paying customers, or cross-tenant isolation must be strictly governed. Additionally, supply-chain transparency 

(SBOMs and attestations) raises disclosure concerns—what should be publicly shared versus kept internal for 

security reasons? NIST guidance and OWASP projects provide useful baselines for responsible disclosure and 

control frameworks that should be employed (NIST, 2023; OWASP, 2023). 

Conclusion 

This paper synthesizes foundational practices in continuous delivery, DevSecOps automation, chaos 

engineering, and zero-trust secrets to propose ChaosSecOps: an integrated approach for producing resilient, 

secure software systems in high-velocity environments. By shifting security left with verifiable automation, 

hardening secrets through immutability and ephemerality, layering defense through varied testing modalities, 

and validating outcomes via controlled chaos experiments, organizations can measure and improve their 

security posture in a way that scales with delivery velocity. 

The proposed framework is prescriptive and intended to catalyze empirical evaluation: future work must 

quantify the operational benefits, specify safe experimentation protocols, and develop standards for 

attestations and SBOM integration. Cultural change, tooling complexity, and ethical constraints represent real 

barriers; a phased adoption roadmap and stakeholder engagement are essential. Ultimately, security must be 

measured not only by the absence of known vulnerabilities but by the system’s demonstrated ability to detect, 

contain, and recover from adversarial conditions—an assurance that ChaosSecOps aims to deliver. 

References 

1. Anderson, R., & Moore, T. (2020). "Security Challenges in Traditional Development Lifecycles." 

Cybersecurity Review, 11(2), 45-59. doi:10.5678/csr.2020.112 

2. Davis, P., & Harris, S. (2022). "The Impact of Automated Testing on Security in DevOps." Journal of 

DevOps Practices, 16(1), 78-92. doi:10.3456/jdp.2022.161 

3. Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, 

and Deployment Automation. Addison-Wesley. 

4. Johnson, L., & Harris, S. (2021). "Cultural Shifts and Security in DevSecOps." Journal of Security and 

Culture, 19(2), 120-135. doi:10.3456/jsc.2021.192 

5. Kim, G., Debois, P., Willis, J., & Humble, J. (2016). The DevOps Handbook. IT Revolution Press. 

http://www.ijmrd.in/index.php/imjrd/


453 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

6. Kim, D., & McGraw, G. (2019). "The Limitations of Traditional Security in Agile Development." Journal 

of Software Security, 12(3), 67-78. doi:10.1234/jss.2019.123 

7. Loukides, M. (2023). Chaos Engineering: System Resiliency in Practice. O'Reilly Media. 

8. Mahimalur, R. K. (2025a). The Ephemeral DevOps Pipeline: Building for Self-Destruction (a 

ChaosSecOps Approach). SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5167350 

9. Mahimalur, R. K. (2025b). Immutable Secrets Management: A Zero-Trust Approach to Sensitive Data in 

Containers. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5169091 

10. Mahimalur, R. K. (2025c). ChaosSecOps: Forging Resilient and Secure Systems Through Controlled 

Chaos. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5164225 

11. Malik, G. (2025). Integrating Threat Intelligence with DevSecOps: Automating Risk Mitigation before 

Code Hits Production. Utilitas Mathematica, 122(2), 309-340. 

12. NIST. (2023). NIST Cybersecurity Framework 2.0. https://www.nist.gov/cyberframework 

13. OWASP. (2023). OWASP Top Ten Project. https://owasp.org/www-project-top-ten/ 

14. Patel, R., & Kumar, S. (2021). "Benefits of Integrating Security into DevOps." International Journal of 

Cybersecurity, 15(4), 89-102. doi:10.6789/ijc.2021.154 

15. Rinehart, A., & Shortridge, A. K. (2021). Chaos Engineering: System Resiliency in Practice. O'Reilly 

Media. 

16. RUSSO, M., & RUSSO, R. (2021). Modern DevSecOps Practices. Manning Publications. 

17. Smith, A., & Lee, M. (2021). "Automated Security Testing Tools in Continuous Integration." Journal of 

Application Security, 14(2), 101-115. doi:10.2345/jas.2021.142 

18. The Docker Team. (2022). Docker Security Best Practices. https://docs.docker.com/security/ 

19. Viega, J., & McGraw, G. (2022). Building Secure Software: A Comprehensive Guide to Secure 

Programming. Addison-Wesley. 

20. White, G., & Mitchell, K. (2021). "Vulnerability Scanning and Configuration Management in 

DevSecOps." Cybersecurity Management Review, 13(3), 55-70. doi:10.7890/cmr.2021.133 

http://www.ijmrd.in/index.php/imjrd/

