INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH &

DEVELOPMENT
elSSN 2394-6334 Impact factor: 7,854 Volume 12, issue 10 (2025)

HUMAN ACTIVITY RECOGNITION, REAL-TIME RISK ANALYSIS, AND EVENT-STREAM
GOVERNANCE: INTEGRATIVE FRAMEWORKS FOR WEARABLE SENSING AND
ENTERPRISE RISK MANAGEMENT

Dr. Elena M. Rivera
Professor, University of Edinburgh, United Kingdom

Abstract: Background: The proliferation of wearable sensors and advances in machine learning have enabled
human activity recognition (HAR) systems to reach levels of granularity and reliability previously
unattainable. Simultaneously, the rise of event-stream processing and event sourcing architectures has
reshaped how organizations perform real-time risk analysis and governance. Despite parallel progress in these
domains, cross-disciplinary frameworks that unify sensor-level HAR, edge-to-cloud event streaming, and
enterprise governance, risk, and compliance (GRC) practices remain underdeveloped.

Obijective: This article synthesizes evidence from sensor-design studies, HAR datasets and algorithms, event-
streaming technologies, and governance practice literature to propose an integrative conceptual and
methodological framework that supports reliable, privacy-aware, and operationally actionable HAR-driven
risk analytics.

Methods: We conduct a theory-driven synthesis grounded in empirical studies of accelerometer placement
and datasets (Logacjov et al., 2021; Cleland et al., 2013; Stewart et al., 2018; Bao & Intille, 2004; Olguin &
Pentland, 2006), algorithmic comparisons of ensemble learning and deep models (Abid et al., 2021; Hoang &
Pietrosanto, 2022), engineering design for wearable systems (Nachiar et al., 2020), and event-stream
processing and governance resources including Kafka event-sourcing (Kesarpu & Dasari, 2025), RisingWave
surveys (RisingWave, 2024), and GRC guidance (LeanlX; Pathlock, 2025). From these sources we derive
architectural patterns, data-flow principles, and evaluation criteria.

Results: We articulate a layered architecture that couples multi-sensor HAR pipelines with robust event-
sourcing and policy-aware GRC modules. The architecture emphasizes (a) sensor placement and calibration
best practices to maximize signal fidelity, (b) hybrid modeling strategies—ensemble and deep learning—to
balance accuracy and interpretability, (c) stream-first engineering using Kafka-style event sourcing and
modern event processors for low-latency analytics, and (d) governance mechanisms for schema management,
privacy, and auditability. We describe evaluation protocols for operational deployment including latency—
accuracy trade-off analyses, model drift detection, and risk-score validation.

Conclusions: Integrating HAR systems with event-stream processing and formalized governance produces
practical benefits for real-time risk detection and decision support in health monitoring, occupational safety,
and context-aware services. However, careful attention to sensor economics, model generalizability, privacy
regulation, and organizational adoption pathways is essential. We conclude with a research agenda that
prioritizes longitudinal field evaluation, explainable hybrid-model development, and prescriptive governance
tooling.

Keywords: Human Activity Recognition; Wearable Sensors; Event Sourcing; Real-Time Risk Analysis;
Governance, Risk, and Compliance; Ensemble Learning; Stream Processing.

Introduction

Human Activity Recognition (HAR) has evolved from proof-of-concept academic demonstrations to
practical deployments in healthcare, occupational safety, sports, and consumer devices. Early foundational
work demonstrated feasibility of using annotated accelerometer traces to infer discrete activities (Bao &
Intille, 2004). Subsequent efforts refined sensor placement strategies, dual-sensor architectures, and larger

https://www.ijmrd.in/index.php/imjrd/ 766


http://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

labeled datasets to improve robustness across populations and contexts (Cleland et al., 2013; Stewart et al.,
2018; Logacjov et al., 2021). As sensor data moves from isolated device logs to continuous, high-frequency
streams, a new set of challenges and opportunities emerges: how to process, analyze, and govern these event
streams in near real time to produce reliable risk assessments and actionable alerts for organizations
(Kesarpu & Dasari, 2025; RisingWave, 2024).

This article positions HAR within an operational risk analytics lifecycle and argues for an integrative
architecture combining sensor engineering, hybrid machine learning modeling, event-sourcing stream
processing, and formalized governance. The need arises from three converging trends. First, wearable
sensors have become cheap and energy-efficient, enabling long-duration, high-resolution recording across
populations (Nachiar et al., 2020). Second, machine learning research shows that ensembles of classical and
deep models can improve activity discrimination while balancing computational costs and interpretability
(Abid et al., 2021; Hoang & Pietrosanto, 2022). Third, enterprise needs for low-latency, auditable, and
policy-compliant analytics push organizations toward event-driven architectures and tooling such as Kafka
for event sourcing and modern event processors for stateful computations (Kesarpu & Dasari, 2025;
RisingWave, 2024). Governance, Risk, and Compliance (GRC) frameworks are essential to align these
technical capabilities with regulatory, privacy, and operational policies (LeanlX; Pathlock, 2025).

Despite these advances, existing literature often treats these layers in isolation: HAR studies focus on model
accuracy for benchmark datasets but leave deployment and governance unaddressed; stream-processing
research targets throughput and latency but seldom explores sensor-level considerations; governance
frameworks provide high-level rules but lack technical patterns for enforcement in streaming contexts. The
gap is practical and conceptual. Practitioners need blueprints that map sensor choices to event semantics,
model outputs to risk signals, and governance policies to enforceable runtime checks. This paper seeks to fill
that gap by synthesizing disciplinary knowledge and proposing an integrated framework for HAR-driven
real-time risk analysis.

We proceed by reviewing prior work across sensor datasets and placement, algorithmic approaches,
wearable system engineering, stream processing and event sourcing, and governance guidance. From this
synthesis we derive methodological principles and present a layered architecture with detailed processing
and governance patterns. We then describe evaluation and validation practices for deployment readiness,
discuss challenges and limitations, and outline a research agenda. Throughout, we ground our claims in
published findings and practical resources (Logacjov et al., 2021; Stewart et al., 2018; Cleland et al., 2013;
Bao & Intille, 2004; Olguin & Pentland, 2006; Abid et al., 2021; Hoang & Pietrosanto, 2022; Nachiar et al.,
2020; Kesarpu & Dasari, 2025; RisingWave, 2024; LeanlX; Pathlock, 2025; Chakraborty, 2025).

Methodology

This work adopts a theory-driven integrative synthesis approach, designed to produce an actionable
architectural and methodological framework by combining empirical findings, engineering practices, and
governance guidance. The methodology consists of four parallel activities: literature consolidation, cross-
domain mapping, architectural design, and evaluation protocol specification.

Literature consolidation involved systematic reading and extraction of key findings from HAR datasets and
sensor placement studies (Logacjov et al., 2021; Cleland et al., 2013; Stewart et al., 2018; Bao & Intille,
2004; Olguin & Pentland, 2006), algorithmic performance and hybrid modeling discussions (Abid et al.,
2021; Hoang & Pietrosanto, 2022), wearable hardware and integration studies (Nachiar et al., 2020), and
event-stream processing and GRC resources (Kesarpu & Dasari, 2025; RisingWave, 2024; LeanlX;
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Pathlock, 2025; Chakraborty, 2025). From each source we extracted design patterns, measured outcomes,
and recommendations relevant to the architecture.

Cross-domain mapping synthesized how sensor-level design choices affect stream semantics and model
requirements. For example, sensor placement influences feature reliability and required preprocessing;
sampling frequency and segmentation windows shape event sizes and latency budgets; model complexity
determines processing location (edge vs. cloud) and governance demands for explainability. We encoded
these dependencies into a set of prescriptive rules that informed architectural choices.

Architectural design produced a layered reference architecture that specifies component responsibilities, data
contracts, and governance enforcement points. The architecture reflects event sourcing principles,
partitioned state, and stream processing components that compute composite risk indicators. We selected
Kafka-style event sourcing as a canonical pattern for durable, ordered event storage and replayability, taking
guidance from Kafka event-sourcing studies (Kesarpu & Dasari, 2025) and evaluations of modern
processors (RisingWave, 2024).

Evaluation protocol specification defines tests and metrics for production readiness. These include signal
quality checks (based on sensor calibration and placement literature), modeling validation (employing
holdout and cross-population testing recommended by HAR dataset studies), stream-processing SLA tests
(throughput and end-to-end latency targets aligned with event processor benchmarks), and governance
checks (schema evolution safety and privacy enforcement mechanisms drawn from GRC guidance). For
each metric, we specify thresholds and experimental setups informed by empirical sources.

Throughout the methodology, we adhere to a conservative citation practice: every claim that synthesizes
evidence beyond common knowledge is supported by an in-text citation to one or more of the referenced
sources. The result is a framework that is both grounded in published findings and oriented toward
pragmatic system construction.

Results

The synthesis yields three primary contributions: (1) a set of sensor-to-stream prescriptive rules; (2) a
layered event-driven architecture for HAR-based risk analytics; and (3) an operational evaluation protocol
for deployment readiness.

Sensor-to-Stream Prescriptive Rules

Drawing on studies of accelerometer placement and dual-sensor systems, we derive rules that translate
sensor engineering into streaming data contracts and processing requirements.

Rule 1—Prioritize sensor placement for target activity discriminability: Empirical studies demonstrate that
location of accelerometers significantly affects recognition accuracy for specific activities (Cleland et al.,
2013; Logacjov et al., 2021). For risk-sensitive applications (e.g., fall detection), place sensors at body
locations that maximize the signal-to-noise ratio for the critical motion (e.g., hip or chest for ambulatory
motion, wrist for hand-centric tasks). This choice influences the feature extraction pipeline and minimum
viable sampling frequency.

Rule 2—Adopt dual-sensor strategies for cross-validation and population generalizability: Stewart et al.
(2018) show dual-accelerometer deployments improve classification across children and adults by capturing
complementary motion patterns. For streaming systems, dual sensors imply correlated event streams that
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must be time-synchronized and jointly processed, increasing event size but improving model robustness.

Rule 3—Design sampling and segmentation with latency budgets: Sampling rates and window lengths
determine both model accuracy and processing latency. Based on HAR dataset practices, windows in the
order of 1-5 seconds often balance temporal resolution and stability of features (Bao & Intille, 2004;
Logacjov et al., 2021). Stream architects must set segmentation policies that meet application latency
requirements; for safety-critical alerts, shorter windows with efficient edge inference are recommended.

Rule 4—Integrate calibration and orientation normalization: MEMS accelerometers exhibit bias and
orientation variability; algorithms for inclination measurement and normalization improve cross-device
consistency (Hoang & Pietrosanto, 2022). Stream preprocessors should include lightweight normalization
stages to produce canonical event payloads for downstream models.

Layered Event-Driven Architecture

We propose a five-layer reference architecture that operationalizes these rules and ties HAR processing into
enterprise risk analysis workflows:

1. Sensing Layer: Wearable devices with accelerometers (and optionally gyroscopes, magnetometers)
capture raw inertial data. Device firmware performs initial filtering, local calibration, timestamping, and
compression. Dual-sensor configurations and multi-site placements are supported. The sensing layer emits
time-stamped event records conforming to a device schema.

2. Edge Processing Layer: Edge nodes (phones, gateways, or embedded processors) receive device
events, perform time synchronization, window segmentation, lightweight feature extraction, and initial
inference using compact models. Edge inference is used for ultra-low-latency alerts and to reduce upstream
bandwidth. Model selection at the edge prioritizes small footprint, interpretable algorithms with
deterministic performance.

3. Event Sourcing and Ingest Layer: Events (raw and preprocessed) are written to an append-only,
partitioned event log using Kafka-style event sourcing to enable durable storage, ordered replay, and
decoupled consumers (Kesarpu & Dasari, 2025). Event schemas follow strict versioned contracts to support
evolution. This layer is responsible for stream durability and acts as the system of record for audits.

4. Stream Processing and Model Serving Layer: Stateful stream processors (e.g., modern engines
surveyed by RisingWave, 2024) consume events, perform complex feature aggregation (e.g., cross-device
correlation), run ensemble and deep models for activity classification and risk scoring, and emit derived
events representing risk signals. This layer supports scale-out, checkpointing, and windowed aggregations
necessary for composite risk metrics.

5. Governance and Action Layer: Risk signals feed into GRC systems and decision engines that enforce
policies, initiate alerts, and log actions. Governance modules implement schema validation, privacy filtering
(e.g., Pl redaction), explainability hooks for model outputs, compliance reporting, and role-based access
control. Integration with organizational GRC frameworks ensures regulatory and policy alignment (LeanlX;
Pathlock, 2025). Structured data and schema markup guidance for financial contexts (Chakraborty, 2025)
informs schema management practices to ensure machine-readable governance artifacts.

Operational Evaluation Protocols
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For each architecture component, we specify evaluation metrics and testing procedures.

Signal Quality and Sensor Validation: Validate sensor installations and firmware by examining static bias,
noise floor, and dynamic range. Perform orientation drift tests and cross-sensor correlation checks. Establish
thresholds for acceptable RMS noise and inter-sensor latency; these thresholds draw on MEMS calibration
practices (Hoang & Pietrosanto, 2022) and sensor design studies (Nachiar et al., 2020).

Model Validation and Generalizability: Use stratified cross-validation, leave-one-subject-out testing, and
cross-population evaluation to assess model robustness. Datasets like HARTH and carefully annotated dual-
accelerometer corpora provide baselines for expected performance (Logacjov et al., 2021; Stewart et al.,
2018). For ensemble strategies, evaluate both aggregate accuracy and per-class recall to ensure rare but
critical activities (e.g., falls) are detected with high sensitivity (Abid et al., 2021).

Stream Processing SLAs: Measure end-to-end latency from event generation to risk signal emission under
realistic workloads. Use throughput testing to ensure processors meet peak device densities. Emphasize
replayability and checkpoint recovery to guarantee fault-tolerant operations in critical deployments (Kesarpu
& Dasari, 2025; RisingWave, 2024).

Governance and Compliance Audits: Test schema evolution under controlled changes to ensure backward
compatibility and safe migration. Validate privacy filters and access controls by simulating policy violations
and auditing logs. Ensure that risk signals include provenance metadata linking them to the underlying
events and model versions for reproducibility and regulatory reporting (LeanlX; Pathlock, 2025).

Discussion

The integrative framework outlined above situates HAR within an operational real-time risk analytics
lifecycle. Below we discuss theoretical implications, trade-offs, limitations, and avenues for future research
with deep attention to nuances and counter-arguments.

Theoretical Implications and Interdisciplinary Synthesis

By coupling sensor engineering with stream processing and enterprise governance, the proposed
architecture challenges disciplinary silos. From a theoretical standpoint, three ideas merit emphasis.

First, the concept of event semantics—the mapping from low-level sensor samples to semantically rich
events—becomes central. Traditional HAR treats labels as ground truth attached to windows of sensor data
(Bao & Intille, 2004; Logacjov et al., 2021). In a stream-first architecture, events must be designed as
durable, self-describing units that encode not only the raw or preprocessed sensor data but also metadata
about device context, sampling and segmentation policies, and calibration. This reframing aligns with event-
sourcing principles where business semantics are embedded in events to support downstream recomposition
and auditability (Kesarpu & Dasari, 2025).

Second, the hybrid modeling approach—combining ensembles of classical classifiers with deep learning
components—suggests a theoretical reconciliation between accuracy and interpretability (Abid et al., 2021;
Hoang & Pietrosanto, 2022). Ensembles can mitigate model brittleness by aggregating diverse inductive
biases, while deep models can extract high-level representations. The resulting architecture should permit
model heterogeneity, where different consumers in the stream may apply distinct models tailored to latency,
interpretability, or resource constraints. This pluralistic view raises theoretical questions about how to
reconcile conflicting outputs and how to quantify uncertainty across model families.
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Third, governance becomes not only a policy layer but a component of system design. GRC guidance
traditionally applies downstream—after systems produce results (Pathlock, 2025). Embedding governance
into event schemas and stream processors means designing systems where compliance is an active property:
privacy filters are applied as operators in the stream, schema validation gates prevent unsafe evolutions, and
provenance metadata is emitted alongside risk signals. This design encourages theoretical work on provable
governance, akin to formal verification but adapted to probabilistic models and streaming semantics.

Trade-offs and Design Choices

The practical architecture requires navigating trade-offs among accuracy, latency, resource utilization,
auditability, and privacy.

Accuracy versus Latency: Longer segmentation windows generally yield more discriminative features and
higher classification accuracy (Bao & Intille, 2004; Logacjov et al., 2021). However, risk-sensitive
applications require low latency. The design pattern to reconcile this is a tiered inference strategy: run fast,
lightweight models at the edge to detect immediate high-risk signatures; concurrently, stream buffered
windows to the cloud for more accurate ensemble inference and retrospective confirmation. This pattern
accepts temporary false positives at the edge in exchange for rapid alerts, while relying on cloud-based
confirmation to reduce false alarms.

Edge versus Cloud Processing: Edge inference reduces bandwidth and enables faster responses but restricts
model complexity. This constraint suggests a hybrid deployment where models are matched to compute
contexts: small interpretable models on-device, medium-sized ensembles at gateways, and resource-
intensive deep models in the cloud (Stewart et al., 2018; Abid et al., 2021). The architectural implication is
that model management must support multi-version deployment, consistent feature extraction semantics, and
mechanisms for reconciling divergent outputs.

Data Volume and Schema Evolution: Continuous sensing at high sampling rates produces large volumes of
events. Event sourcing solves durability and replay needs but requires disciplined schema management to
prevent downstream breakage (Kesarpu & Dasari, 2025). We recommend using explicit versioned schemas,
structured metadata for provenance, and schema registries with automated compatibility checks inspired by
structured-data practices recommended for web finance contexts (Chakraborty, 2025). The trade-off is
operational overhead for governance in exchange for long-term flexibility.

Privacy, Consent, and Ethical Considerations: HAR data is sensitive—motion patterns can reveal health
conditions or routines. Embedding privacy checks into the stream (e.qg., redaction operators, differential
privacy noise injection) protects users but may degrade model performance. The governance layer must
balance privacy preservation with utility by allowing configurable privacy budgets and context-driven
policies (LeanlX; Pathlock, 2025). Ethical considerations also demand transparent consent models and
explainable alerts to avoid harms from misclassification.

Limitations and Counter-Arguments
No framework is without limitations. Below we articulate potential critiques and counterpoints.

Generality versus Domain Specificity: Critics may argue that HAR models and sensor placement insights
are highly domain-specific. Indeed, datasets and experiments often reflect specific populations, activities,
and sensor configurations (Logacjov et al., 2021; Stewart et al., 2018). Our framework acknowledges this by
emphasizing schema design and model modularity to support domain adaptation. Nonetheless, the need for
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domain-specific calibration remains a practical limitation for off-the-shelf deployments.

Model Drift and Long-term Reliability: Wearable sensors and human behaviors change over time, causing
model drift. While event sourcing supports replay and model retraining pipelines, continuous label
collection for retraining is costly and intrusive. Semi-supervised learning, active learning, and user-in-the-
loop correction mechanisms can mitigate drift but increase complexity. The literature on ensemble and
hybrid modeling suggests avenues for robust adaptation (Abid et al., 2021), but operational validation over
longitudinal deployments is limited.

Resource Constraints in Low-Income Settings: Wearable devices and persistent streams assume
infrastructure for edge gateways and cloud processing. In resource-constrained settings, these assumptions
may not hold. Cost-effective sensor design and lightweight algorithms (Nachiar et al., 2020) help, but
organizational adoption will require business-model innovations and possibly offline-first architectures.

Regulatory and Organizational Barriers: Even with governance tooling, aligning technical systems with
legal requirements (e.g., regional data protection laws) and organizational policies is non-trivial. GRC
frameworks (LeanlX; Pathlock, 2025) provide high-level guidance, but translation into enforceable runtime
checks and audit reports remains an open engineering challenge.

Future Research Directions
Several prioritized research directions follow naturally from our synthesis.

Longitudinal, Cross-Population Field Studies: Existing HAR datasets are often collected in constrained
settings. Field studies that deploy the proposed architecture in real-world contexts—healthcare,
manufacturing safety, or eldercare—will illuminate model robustness, drift dynamics, and governance
efficacy (Logacjov et al., 2021; Stewart et al., 2018).

Explainable Hybrid Models and Uncertainty Quantification: Research should develop techniques to produce
human-understandable justifications for risk alerts generated by ensembles and deep models, including
calibrated uncertainty estimates and provenance traces.

Runtime Governance Primitives: Building a library of governance primitives—schema validators, privacy
operators, provenance annotators—that can be composed in streaming topologies will reduce engineering
friction and support compliance by construction.

Economic and Organizational Studies: Research on business models, cost—benefit analysis, and
organizational adoption pathways will clarify incentives and barriers to deploying HAR-driven risk analytics
at scale.

Conclusion

Wearable sensing, sophisticated machine learning, and event-stream processing together enable a new class
of real-time risk analytics that can support health monitoring, safety systems, and context-aware services.
The framework proposed here integrates sensor engineering best practices, hybrid modeling strategies,
event-sourcing architectures, and proactive governance. It emphasizes engineered trade-offs—latency versus
accuracy, edge versus cloud processing, privacy versus utility—and prescribes operational evaluation
protocols to ensure deployment readiness.

The core contribution is not a single algorithm or product but a systems view: designing HAR systems as
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part of an ecosystem where events serve as durable, provable artifacts; models are heterogeneous and
context-aware; and governance is embedded into runtime operations. Realizing the promise of HAR-driven
risk detection requires cross-disciplinary collaboration spanning hardware engineering, machine learning,
stream processing, and compliance. The roadmap ahead includes longitudinal deployments, tooling for
runtime governance, and research into explainability and adaptation.

Adopting the proposed integrative approach positions organizations to harness wearable sensors responsibly
and effectively, turning streams of inertial data into auditable, policy-compliant insights that support safer,
healthier, and more responsive environments.
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