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Abstract 

Background: The demand for fast, accurate dose calculation methods in proton therapy has spurred research 

into leveraging Graphics Processing Units (GPUs) for both pencil beam algorithms and full Monte Carlo 

simulations. This paper synthesizes methodological advances and evaluates the computational and clinical 

trade-offs of GPU-accelerated approaches, outlining pathways to integrate sub-second dose calculation into 

adaptive clinical workflows. 

Methods: Building on foundational work in GPU programming and parallel computing, this study constructs 

a conceptual pipeline that integrates contemporary pencil beam models and GPU Monte Carlo techniques. 

The pipeline emphasizes runtime code generation, memory-conscious data structures, and validated physical 

models for proton transport and scattering. Methodological design choices are aligned with historical GPU 

acceleration practices and modern clinical constraints. Performance and accuracy trade-offs are analyzed 

qualitatively and quantitatively in relation to published benchmarks: fast pencil beam approximations (Da 

Silva et al., 2015; Fujimoto et al., 2011), GPU Monte Carlo platforms (Perl et al., 2012; Lee et al., 2022), and 

validated commissioning procedures (Azcona et al., 2023). 

Results: The articulated GPU pipeline demonstrates that sub-second pencil beam computations are attainable 

for individual fields using a combination of double-Gaussian beam models, hierarchical memory access 

patterns, and optimized reduction strategies—consistent with previously reported sub-second results (Da Silva 

et al., 2015). When contrasted with GPU Monte Carlo methods, pencil beam techniques offer orders-of-

magnitude speed advantages at the cost of limited modeling fidelity for heterogeneous media and complex 

scattering scenarios (Perl et al., 2012; Lee et al., 2022). GPU Monte Carlo implementations, while more 

computationally demanding, provide superior dosimetric fidelity that is advantageous for commissioning and 

adaptive replanning when clinical constraints permit longer computation windows (Paganetti et al., 2021; 

Azcona et al., 2023). 

Discussion: We provide a deep interpretive analysis of algorithmic design, including the theoretical 

underpinnings of pencil beam decompositions and Monte Carlo sampling strategies, the implications of 

parallel hardware architectures on numerical stability and reproducibility, and the practical considerations of 

clinical integration—quality assurance, commissioning, and workflow compatibility. Limitations include the 

challenge of balancing speed, accuracy, and validation demands; potential numerical artifacts introduced by 

aggressive optimization; and the need for robust clinical validation across tissue heterogeneities (Schreuder et 

al., 2019; Goma et al., 2018). Future directions center on hybrid models that fuse fast pencil beam 

precomputations with targeted Monte Carlo refinement, automated commissioning pipelines, and exploitation 

of modern GPU programming paradigms and run-time code generation (Klöckner et al., 2012; Lulla, 2025). 

Conclusions: GPU-accelerated dose calculation is mature enough to dramatically improve the feasibility of 

adaptive proton therapy. Through careful algorithmic design, validation, and clinical integration, facilities can 

realize near real-time planning for selected adaptive scenarios while retaining Monte Carlo accuracy where it 

matters most. 

 

Keywords: proton therapy, GPU acceleration, pencil beam, Monte Carlo, adaptive radiotherapy, dose 

calculation, run-time code generation 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & 

DEVELOPMENT 
eISSN 2394-6334 Impact factor: 7,854 Volume 12, issue 10 (2025) 

Accelerating Proton Therapy Dose Calculation: A Comprehensive Study of GPU-Based Pencil Beam 

and Monte Carlo Approaches for Clinical Adaptivity 

 

Dr. Aiden R. Moreau  

Global Institute for Computational Medicine, École Universitaire de Technologie, France 

 

http://www.ijmrd.in/index.php/imjrd/


761 https://www.ijmrd.in/index.php/imjrd/ 

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT 

 

 

INTRODUCTION 

Radiation therapy continues to evolve toward increasingly conformal and adaptive interventions, driven by 

technological advances in beam delivery systems, imaging, and computational resources. Proton therapy 

stands out among modalities for its physical dose characteristics—chiefly the Bragg peak—which permit 

superior sparing of normal tissues when compared to conventional photon therapy. However, the same physics 

that provide dosimetric advantages also increase the complexity of accurate dose calculation. Proton transport 

is sensitive to tissue heterogeneities, range uncertainties, and nuclear interactions, which complicates 

deterministic modeling and favors stochastic methods such as Monte Carlo for highest-fidelity dose prediction 

(Perl et al., 2012; Paganetti et al., 2021). 

Clinical adoption of Monte Carlo has historically been hampered by computational expense. This limitation 

has spurred research into surrogate and hybrid models—pencil beam algorithms and double-Gaussian 

representations among them—that trade some physical fidelity for computational speed, enabling practical 

clinical runtimes for tasks such as plan optimization and initial dose estimation (Soukup et al., 2005; da Silva 

et al., 2015). Simultaneously, the maturation of commodity parallel compute platforms—namely Graphics 

Processing Units (GPUs)—has renewed interest in bringing Monte Carlo into routine clinical use by 

dramatically reducing runtimes (Larsen & McAllister, 2001; Owens et al., 2007). 

The parallel computing landscape has been shaped by studies that chart both the opportunities and constraints 

of GPUs for scientific computing (Asanović et al., 2006; Owens et al., 2007). Pioneering algorithms for matrix 

multiplication and general computational kernels demonstrated that GPUs could outperform traditional CPUs 

by leveraging massive parallelism, but also highlighted the need for algorithmic redesign to exploit memory 

hierarchies and thread-level parallelism (Larsen & McAllister, 2001; Brodtkorb et al., 2012). In proton 

therapy, these insights translate into algorithmic adaptations for particle propagation, collision modeling, and 

scoring that avoid serial bottlenecks and maximize data locality (Fujimoto et al., 2011; Da Silva et al., 2015). 

Recent open-source implementations—both research and clinical—have further advanced GPU Monte Carlo 

into practical territory. Platforms like TOPAS and newer open-source GPU-native codes provide validated 

frameworks for research and clinical application, elucidating best practices for accuracy, QA, and 

commissioning (Perl et al., 2012; Lee et al., 2022). At the same time, carefully optimized pencil beam 

approaches implemented on GPUs have achieved sub-second runtimes for single-field dose calculations, 

making them attractive for rapid adaptive interventions (Da Silva et al., 2015). 

Despite these advances, the field faces unresolved tensions: (1) how to integrate fast, approximate models 

with high-fidelity Monte Carlo in a clinically safe manner; (2) how to structure software for maintainability, 

portability, and clinical validation; and (3) how to design commissioning and QA processes that reflect the 

hybrid nature of modern pipelines (Azcona et al., 2023; Schreuder et al., 2019). Moreover, hardware 

improvements and programming models—scripting-based run-time code generation, improvements in GPU 

memory and interconnects, and heterogeneous computing—offer new opportunities but require careful 

translation into clinical-grade software engineering practices (Klöckner et al., 2012; Lulla, 2025). 

This work acts as a comprehensive synthesis and prescriptive guide for designing a clinically oriented GPU-

accelerated dose calculation pipeline for proton therapy. It draws upon foundational GPU programming 

literature and contemporary proton dose calculation research to produce a methodology that honors both the 

physics and the clinical constraints required for adoption. The aims of this manuscript are threefold: to 

articulate the algorithmic foundations and practical implementations for GPU-accelerated pencil beam and 

Monte Carlo dose calculation; to evaluate trade-offs in speed and accuracy with respect to clinical needs; and 

to propose integration pathways and validation strategies to enable safe deployment within adaptive proton 
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therapy workflows. 

METHODOLOGY 

The methodology section delineates a conceptualized, reproducible approach to developing and validating a 

GPU-accelerated proton dose engine that supports both pencil beam and Monte Carlo modalities. Emphasis 

is placed on software architecture, algorithmic kernels optimized for GPU execution, data structures for 

memory-efficient operation, and validation strategies that conform to clinical commissioning expectations. 

Software Design Philosophy 

The software architecture adheres to separation-of-concerns principles: high-level orchestration, physics 

kernels, memory management, and I/O are modularized to permit independent optimization and testing. This 

mirrors recommendations from general-purpose GPU computation surveys and run-time code generation 

frameworks, which emphasize modularity for maintainability and performance portability (Owens et al., 2007; 

Klöckner et al., 2012). The system exposes both a scripting interface for rapid prototyping (Python bindings) 

and a compiled core for performance-critical components, enabling a workflow that balances developer 

productivity with runtime efficiency—a pattern underlined by scripting-based GPU run-time code generation 

approaches (Klöckner et al., 2012). 

Programming Models and Runtime Code Generation 

Two complementary programming modes are advocated: a high-level control plane using a scripting language 

(e.g., Python) and a GPU-executable kernel plane employing either CUDA or OpenCL. The scripting plane 

performs job orchestration, patient data pre-processing (CT-to-stopping-power conversions), and post-

processing of dose. The kernel plane handles the computationally intensive tasks: pencil beam convolution, 

particle transport steps, interaction sampling, and dose scoring. Run-time code generation allows kernel 

specializations based on machine capability and patient geometry (Klöckner et al., 2012). Specialized kernels 

can be generated on-the-fly to exploit GPU features like warp-level intrinsics and shared memory tiling 

without requiring multiple precompiled binaries, improving portability and maintainability. 

Data Management and Memory Layout 

Efficient GPU utilization requires attention to memory coalescence and minimizing divergent control flow. 

Data structures are organized to favor structure-of-arrays layouts for frequently accessed particle attributes 

(position, direction cosine, energy) to permit contiguous memory access across threads, thereby enhancing 

throughput (Owens et al., 2007). For Monte Carlo, particles are batched into work queues sized to the GPU's 

concurrency capability, with active particles occupying contiguous buffers. Dose scorers use spatially 

partitioned accumulation buffers with atomic accumulation strategies in device memory or per-thread-block 

accumulation followed by hierarchical reduction to minimize atomic contention—a strategy consistent with 

high-performance GPU reductions and prior GPU Monte Carlo implementations (Fujimoto et al., 2011; Lee 

et al., 2022). 

Physical Models 

Pencil Beam Representation 

For pencil beam calculations, the double-Gaussian beam model is selected for its balance of simplicity and 

improved lateral profile representation relative to single-Gaussian models (da Silva et al., 2015). The model 
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decomposes a clinical field into discrete pencil beams, each described by an energy spectrum, central axis, 

and two Gaussian lateral components (core and halo) whose widths evolve with depth. Stopping-power 

integration is performed along central rays using calibrated CT-to-stopping-power mappings (Schneider et al., 

1996; Goma et al., 2018). Heterogeneity corrections are applied using path-length scaling and lateral scaling 

heuristics that are standard in pencil beam algorithms, acknowledging their limitations in complex 

heterogeneities (Soukup et al., 2005). 

Monte Carlo Transport 

The Monte Carlo engine simulates proton transport discretely, sampling interactions (elastic, inelastic, nuclear 

reactions) based on cross-section models appropriate for clinical energy ranges. The engine implements 

condensed-history steps for continuous electromagnetic slowing with discrete sampling of large-angle scatter 

and nuclear interactions following practices established in clinical Monte Carlo tools (Perl et al., 2012). 

Specialized variance reduction strategies—such as importance sampling, particle splitting near scoring 

regions, and Russian roulette for low-weight particles—are implemented judiciously to reduce variance while 

preserving physical fidelity. Outputs include volumetric dose tallies and standard uncertainty estimates. 

Parallelization Strategy 

Both pencil beam convolution and Monte Carlo sampling are mapped to GPUs by distributing independent 

work units across thread blocks. For pencil beam, each pencil is handled by a thread block that evaluates 

depth-wise dose deposition and lateral spreading, employing shared memory for profile kernels and read-only 

caches for material properties. For Monte Carlo, each particle is treated as an independent track processed by 

a GPU thread, with careful handling of divergent branching through stackless kernel designs that group 

particles by similar states to minimize divergence (Owens et al., 2007). Inter-kernel load balancing is achieved 

by dynamic work queues on the device that collect newly generated secondary particles and assign them to 

idle threads, a pattern demonstrated in efficient GPU Monte Carlo codes (Lee et al., 2022). 

Validation, Commissioning, and Quality Assurance 

Validation proceeds on multiple levels. Kernel-level unit tests verify energy deposition for simple geometries 

and analytic cases. System-level validation compares engine outputs against benchmark Monte Carlo results 

(e.g., TOPAS) and experimental measurements in water and heterogeneous phantoms (Perl et al., 2012; 

Schreuder et al., 2019). Commissioning follows established procedures for synchrotron-based systems and 

scanning beams, requiring beam model tuning against measured depth-dose and lateral profiles and confirming 

CT calibration for stopping powers (Azcona et al., 2023; Schneider et al., 1996). Monte Carlo-to-measurement 

deviations are quantified using gamma analysis and range difference metrics, with thresholds set according to 

clinical practice and regulatory expectations. 

Performance Metrics and Benchmarking 

Benchmark workloads encompass single-field dose calculation for typical clinical field sizes, multi-field 

composite plans, and Monte Carlo-based high-fidelity simulations for select regions. Performance is measured 

in wall-clock time, throughput (particles/sec), dose map generation time, and statistical uncertainty for Monte 

Carlo tallies. Scaling tests examine GPU occupancy, memory throughput, and multi-GPU distribution 

strategies for larger workloads. Benchmarks are contextualized against published results demonstrating sub-

second pencil beam calculations (Da Silva et al., 2015) and GPU Monte Carlo runtimes (Perl et al., 2012; Lee 

et al., 2022). 
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Clinical Integration Considerations 

Workflow integration encompasses DICOM RT plan ingestion, CT preprocessing, beam model selection, dose 

calculation, plan evaluation, and export for treatment delivery. Emphasis is placed on automated QA gates: 

verification against commissioning baselines, secondary dose calculation cross-checks using a different 

algorithm, and uncertainty propagation reporting to clinicians. An adaptive workflow is proposed wherein 

pencil beam calculations provide immediate dose feedback for decision-making, with targeted Monte Carlo 

recalculations for regions where precision is critical, such as near critical structures or in the presence of high-

density implants (Paganetti et al., 2021). 

Ethical and Regulatory Considerations 

Deployment of GPU-accelerated dose engines requires adherence to medical device regulations, robust 

documentation of software lifecycle processes, and traceable QA records. Validation and ongoing quality 

assurance practices follow radiation oncology standards to ensure patient safety. Open-source components 

should be treated with the same rigor as proprietary code, with strict versioning, reproducible build processes, 

and cryptographic checksums for released binaries. 

RESULTS 

This section synthesizes expected outcomes and quantitative relationships grounded in the literature and the 

conceptual pipeline articulated above. Because this manuscript builds a methodological framework rather than 

reporting new experimental data, results are presented as an evaluative synthesis of performance, accuracy, 

and clinical viability drawn from published studies and from the theoretical implications of the described 

implementation strategies. 

Performance Achievements with Pencil Beam on GPUs 

Published reports and implementations indicate that GPU-accelerated pencil beam methods can achieve sub-

second to low-second runtimes for single-field dose calculations depending on field size, beam energy spread, 

and GPU generation (Da Silva et al., 2015; Fujimoto et al., 2011). These results are consistent with the 

following mechanistic understanding: pencil beam convolution reduces the three-dimensional dose integration 

problem to a set of independent depth-wise integrations convolved with lateral kernels, enabling massive 

parallelism across pencil beams and depths. Kernel-level optimizations—such as precomputation of lateral 

kernels, use of shared memory for kernel caching, and coalesced memory accesses for beam parameters—

yield high occupancy and memory bandwidth utilization on modern GPUs, leading to substantial speedups 

relative to CPU implementations (Owens et al., 2007). 

Quantitatively, the sub-second benchmark reported by Da Silva et al. (2015) for pencil beam calculations is 

achieved under representative clinical conditions using a double-Gaussian model and a carefully tuned GPU 

kernel pipeline (Da Silva et al., 2015). Extrapolating from kernel throughput and GPU memory bandwidth 

metrics, we expect single-field runtimes to increase roughly linearly with the number of pencil beams and the 

depth sampling resolution, while being sub-linear with respect to energy layers if per-layer batch processing 

and kernel reuse are employed. The practical implication is that clinical plans with moderate field complexity 

can be computed sufficiently fast to support near-real-time decision making when using pencil beam models 

on GPUs. 

Monte Carlo on GPUs: Throughput Versus Fidelity 
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GPU Monte Carlo platforms report significantly greater computational demands but produce higher-fidelity 

dosimetry, especially in heterogeneous media and near interfaces where deterministic models struggle (Perl 

et al., 2012; Lee et al., 2022). GPU Monte Carlo codes like MOQUI have demonstrated clinically relevant 

runtimes by exploiting data-parallel particle transport and optimized memory layouts, but still typically require 

longer runtimes than pencil beam methods—ranging from seconds to minutes depending on statistical 

precision requirements (Lee et al., 2022). 

Statistical uncertainty in Monte Carlo tallies scales approximately with the inverse square root of the number 

of histories; hence, achieving a halving of uncertainty requires roughly a fourfold increase in histories and 

computation. GPUs ameliorate this cost by enabling much higher histories-per-second than CPUs, but the 

fundamental scaling law imposes diminishing returns. Variance reduction techniques and targeted refinement 

strategies (e.g., splitting in regions of interest) can effectively allocate computational effort to clinically 

relevant regions and reduce overall runtime for a desired uncertainty distribution (Perl et al., 2012). 

Hybrid Strategy Outcomes 

By integrating pencil beam for initial rapid estimation and Monte Carlo for selective refinement, a hybrid 

workflow can reduce end-to-end adaptive planning time while preserving dosimetric fidelity where it matters 

most. For instance, a pipeline might use GPU pencil beam calculations to evaluate candidate adjustments in 

seconds and then trigger Monte Carlo recalculations for a narrowed set of fields or sub-volumes, limiting 

Monte Carlo computational expense while achieving clinically acceptable accuracy. Empirical case studies in 

the literature suggest that such hybrid tactics can deliver clinically usable results with modest computational 

resources while meeting QA thresholds established through commissioning studies (Da Silva et al., 2015; 

Azcona et al., 2023). 

Accuracy and Clinical Acceptability 

Accuracy comparisons between pencil beam and Monte Carlo methods emphasize scenarios where pencil 

beam models are most challenged—heterogeneous tissues, high-density implants, and small, highly 

modulated fields. Empirical studies have demonstrated measurable deviations in range and dose distributions 

for pencil beam algorithms in the presence of pronounced heterogeneities, while Monte Carlo retains accuracy 

under these conditions (Schreuder et al., 2019; Goma et al., 2018). Consequently, clinical deployment must 

carefully assess acceptable error bounds and define safeguard procedures (e.g., automatic Monte Carlo 

confirmation when heterogeneity metrics exceed thresholds) to prevent clinically significant discrepancies. 

Commissioning and Validation Results 

Commissioning procedures for GPU-accelerated engines align with established practices requiring 

measurement-based tuning of beam models and cross-validation with trusted Monte Carlo benchmarks 

(Azcona et al., 2023). Practical results from prior commissioning efforts indicate that GPU-enabled engines 

can match measurement-based commissioning metrics—such as depth-dose curves and lateral profiles—to 

within clinically accepted tolerances after careful parameterization and iterative model calibration (Azcona et 

al., 2023; Schneider et al., 1996). 

Scalability and Multi-GPU Considerations 

For large workloads or high-precision Monte Carlo simulations, multi-GPU scaling is feasible but introduces 

communication and load-balancing considerations. Partitioning strategies—either spatial partitioning of the 

dose scorer or particle-based distribution—affect scalability and memory duplication overheads. Empirical 
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evidence suggests near-linear scaling for well-partitioned problems with minimal inter-GPU communication; 

however, as the number of GPUs increases, efficiencies diminish due to communication overheads and 

potential duplication of large data structures (Owens et al., 2007). Practical multi-GPU deployment must 

balance these trade-offs and may favor single-node multi-GPU systems with high-speed interconnects for 

clinical environments. 

Software Maintainability and Reproducibility 

Adoption in clinical contexts requires software that is maintainable and reproducible. Run-time code 

generation facilitates portability by producing optimized kernels tailored to the target GPU architecture, and 

scripting interfaces simplify integration into clinical pipelines (Klöckner et al., 2012). However, run-time 

generation also requires robust reproducibility strategies—deterministic build seeds and explicit kernel 

caching mechanisms—to ensure consistent behavior across deployments. Traceable version control and binary 

release practices are thus essential to meet clinical regulatory requirements. 

DISCUSSION 

This section interprets the methodological and synthesized results in depth, articulating theoretical 

implications, counter-arguments, limitations, and a forward-looking research agenda. 

Interpretation of Performance-Accuracy Trade-offs 

The juxtaposition between pencil beam and Monte Carlo approaches reveals a quintessential trade-off in 

computational radiotherapy: speed versus physical fidelity. Pencil beam models achieve remarkable speed 

because they compress the many-body problem of particle interactions into parameterized kernels and 

deterministic integrals. This compression is justified in relatively homogeneous media or when clinical 

tolerances permit small deviations, enabling workflows—such as online adaptive replanning—where 

immediacy is paramount (Soukup et al., 2005; da Silva et al., 2015). 

Conversely, Monte Carlo's fidelity stems from simulating the underlying stochastic physics. This fidelity is 

crucial where clinical decisions hinge upon fine spatial accuracy, such as dose near critical structures or in 

regions where tissue heterogeneity causes significant scattering or range shifts. GPU acceleration substantially 

reduces Monte Carlo runtimes, but the fundamental statistical nature of Monte Carlo imposes a computational 

floor for uncertainty that cannot be circumvented without introducing biased variance reduction. Hence, 

Monte Carlo remains the gold standard for commissioning and final verification while pencil beam methods 

offer a pragmatic tool for immediate decision-making. 

Theoretical Implications for Algorithm Design 

The architecture of GPUs—massive parallelism combined with complex memory hierarchies—requires 

algorithmic designs that differ from traditional CPU-centric thinking (Asanović et al., 2006; Owens et al., 

2007). Algorithms must be recast to maximize throughput via data parallelism and to minimize thread 

divergence. For pencil beam convolution, this manifests as decomposing the domain into homogeneous 

processing elements (pencil beams) that map cleanly to thread blocks. For Monte Carlo, it motivates stackless 

kernel designs and grouping by particle state to reduce divergence. The implication for future algorithmic 

research is clear: radiotherapy algorithms should be formulated with hardware-aware primitives—reductions, 

prefix-sums, and tiled memory patterns—as fundamental building blocks rather than as afterthoughts. 

Reproducibility and Numerical Stability 
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Aggressive optimizations and parallel reductions raise concerns about numerical stability and bitwise 

reproducibility. Floating-point reductions in parallel can produce non-deterministic sums depending on 

reduction order; while clinically irrelevant in many contexts, such differences can complicate regression 

testing and regulatory traceability. Two complementary strategies mitigate this issue: (1) use of numerically 

stable accumulation techniques (e.g., Kahan summation variants adapted for parallelism) and (2) deterministic 

scheduling of reductions through controlled work partitioning and fixed reduction trees. While these strategies 

may slightly increase runtime, they provide the reproducibility needed for clinical acceptance and for 

consistent commissioning baselines. 

Validation Strategies and Clinical Safety 

Any clinical deployment must satisfy rigorous validation and quality assurance practices. This requirement 

implies a hierarchical validation strategy: kernel unit tests, integration tests against analytical benchmarks, 

phantom studies with measured dosimetry, and clinical end-to-end tests using retrospective cases. 

Additionally, commissioning must include CT calibration procedures and verification against external 

dosimetry for multiple beam energies and configurations (Schneider et al., 1996; Azcona et al., 2023). A 

particularly important clinical safeguard is the automatic detection of cases where pencil beam approximations 

may fail (e.g., presence of high-density implants, steep heterogeneity gradients), triggering mandatory Monte 

Carlo verification before clinical approval. 

Counter-Arguments and Nuanced Considerations 

Some practitioners argue that given the availability of high-performance clusters and cloud resources, the 

emphasis on pencil beam speed is less critical—Monte Carlo can be used more liberally when compute 

resources permit. While this is a compelling viewpoint for research and commissioning, it underestimates 

practical clinical constraints: latency requirements for online adaptation, data transfer delays, and regulatory 

considerations concerning cloud-based patient data handling. Moreover, not all centers possess scalable cloud 

resources or the regulatory framework to offload protected health information. Therefore, fast local methods 

retain practical value for many centers. 

Another counter-argument concerns the risk of over-reliance on GPU hardware that may become obsolete or 

unsupported. This risk underscores the importance of architectural portability—using abstraction layers and 

run-time code generation to target multiple backends and to permit fallback to CPU implementations if 

necessary. Software engineering rigor and modular design help insulate clinical workflows from hardware 

obsolescence. 

Limitations 

The present paper synthesizes methodologies and literature but does not present novel experimental data. 

Thus, the conclusions are inferential and rely on the published performance and validation data available in 

the literature. Another limitation is that hardware-specific optimizations may not generalize across GPU 

generations; performance claims should be contextualized to particular hardware classes and driver 

ecosystems. Additionally, clinical workflows vary widely across institutions, so the proposed pipeline may 

need considerable adaptation to local standards, imaging systems, and regulatory environments. 

Future Directions 

Several research avenues promise to further bridge the speed-accuracy divide. Hybrid methods that 

dynamically combine pencil beam precomputations with localized Monte Carlo refinement could provide the 
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best of both worlds for adaptive workflows. Machine learning models trained to predict regions where Monte 

Carlo corrections are necessary may further optimize computational allocation. Advances in heterogeneous 

computing—combining GPU, CPU, and specialized accelerators—could enable new partitioning strategies 

that exploit each device's strengths. Continued work on run-time code generation and portable high-level 

abstractions will ease maintenance burdens and accelerate clinical translation (Klöckner et al., 2012; Lulla, 

2025). 

Operational Recommendations 

For centers aiming to adopt GPU-accelerated dose calculation, a staged approach is recommended: begin with 

GPU-accelerated pencil beam for low-risk, fast-turnaround tasks while implementing robust QA and 

commissioning; parallelly pilot GPU Monte Carlo workflows for commissioning and targeted verification; 

and finally, integrate hybrid workflows with automated verification triggers to ensure clinical safety. 

Investment in software engineering practices—automated testing, continuous integration, and reproducible 

builds—is as essential as computational hardware to ensure reliable clinical operation. 

CONCLUSION 

GPU acceleration has transformed the computational landscape for proton therapy dose calculation, enabling 

both sub-second pencil beam computations and practical GPU Monte Carlo simulations. Each approach serves 

different clinical needs: pencil beam methods provide the speed required for rapid clinical decision-making, 

while Monte Carlo offers the fidelity necessary for commissioning and high-stakes verification. A hybrid 

paradigm—leveraging pencil beam for immediate feedback and Monte Carlo for selective refinement—

emerges as a pragmatic path toward routine clinical adaptivity. 

Implementation success depends not only on algorithmic choices but equally on rigorous validation, 

commissioning, and software engineering that meets clinical and regulatory standards. Run-time code 

generation and scripting-based orchestration can reconcile developer productivity with the performance needs 

of GPUs, but they must be paired with deterministic operational modes for clinical reproducibility. Future 

work should explore automated triage systems that identify regions requiring Monte Carlo verification, hybrid 

algorithms that reduce Monte Carlo footprints, and continued investments in portable, maintainable software 

frameworks. 

Ultimately, the integration of GPU-accelerated dose calculation into clinical practice stands to significantly 

enhance the responsiveness and precision of proton therapy. By aligning computational design with clinical 

workflows and validation imperatives, centers can translate hardware and algorithmic advances into improved 

patient care. 
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