
333 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

Abstract

Background: Modern distributed computing platforms—ranging from cloud infrastructures to large-scale

GPU manufacturing testbeds and high-performance computing (HPC) clusters—face a continuous and

evolving spectrum of faults that threaten availability, correctness, and performance. The interplay between

hardware failures, software bugs, performance variability, security vulnerabilities, and adversarial

disturbances requires integrated fault tolerance strategies that span reactive, proactive, and architectural levels

(Abd Elfattah et al., 2017; Engelmann et al., 2009).

Objectives: This article synthesizes theoretical foundations and practical approaches from the literature to

present a cohesive framework for designing, evaluating, and deploying resilient distributed systems. It aims

to reconcile checkpoint-restart and migration techniques with machine learning–driven detection, priority-

based resource scheduling, multi-cloud privacy and redundancy strategies, and domain-specific considerations

for large-scale GPU test infrastructure.

Methods: We conduct a conceptual, literature-grounded analysis that reconstructs canonical fault tolerance

mechanisms—checkpointing, process migration, replication, and scheduling—and situates them within

modern cloud and HPC contexts. This work integrates empirical lessons from system-level and application-

level checkpointing, predictive preemptive migration, cooperative task backfilling, and anti-fragile design

principles in cloud infrastructures (Litzkow & Solomon, 1992; Duell et al., 2002; Engelmann et al., 2009;

Hasan & Goraya, 2016; Abid et al., 2014). We evaluate trade-offs among overhead, serviceability, and security

and present a unified taxonomy for practitioners.

Results: Detailed comparative analysis demonstrates how hybrid strategies—combining lightweight

application-level checkpointing with selective system-level approaches, using proactive migration informed

by online prediction, and employing multi-cloud redundancy for privacy and fault coverage—outperform

monolithic techniques across availability, recovery time, and performance degradation metrics in

representative scenarios (Hursey et al., 2007; Tebaa & El Hajji, 2014; Sun et al., 2012). For GPU

manufacturing testbeds, tailored approaches that incorporate test-infrastructure-aware checkpoint scheduling,

workload divisibility, and automated path migration significantly reduce mean time to recovery and test

rework overhead (Designing Fault-Tolerant Test Infrastructure, 2025; Vishnu et al., 2007).

Conclusions: Robust distributed systems require layered, adaptive fault tolerance that blends proactive

prediction, reactive recovery, and design-time architectural choices. Future research should emphasize

explainable predictive models for failure, standards for portable checkpoint formats, and formal frameworks

for anti-fragility in cloud service orchestration. This synthesis provides both conceptual clarity and

prescriptive guidance for architects and researchers seeking to advance resilience in cloud and HPC

environments.

Keywords: fault tolerance, cloud computing, checkpoint/restart, proactive migration, anti-fragile

infrastructures, GPU test infrastructure, divisible loads

INTRODUCTION

The contemporary computing landscape is dominated by distributed platforms: cloud datacenters that host

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH &

DEVELOPMENT
eISSN 2394-6334 Impact factor: 7,854 Volume 12, issue 08 (2025)

Resilient and Fault-Tolerant Cloud and High-Performance Computing Infrastructures: Theories,

Mechanisms, and Frameworks for Next-Generation Distributed Systems

Johnathan R. Meyers

Global Institute of Computing, University of Wellington

http://www.ijmrd.in/index.php/imjrd/

334 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

elastic services, clusters that drive scientific simulation, and specialised manufacturing testbeds that exercise

millions of transistors on GPUs prior to deployment. These environments are attractive for their scale and

flexibility but are correspondingly vulnerable to a multitude of faults that can be transient or permanent, benign

or adversarial, localized or systemic (Jhawar & Piuri, 2013; Sun et al., 2012). The central problem confronting

researchers and practitioners is not the presence of faults per se—a perennial reality in computing—but how

to design systems that anticipate, absorb, and recover from faults with minimal user-visible degradation and

acceptable operational cost.

Classic fault tolerance research provided a repertoire of tools: checkpoint/restart, replication, rollback-

recovery, and task migration (Litzkow & Solomon, 1992; Silva & Silva, 1998). Over time, the scope of these

solutions enlarged to address distributed systems' unique challenges—network variability, virtualized

resources, multi-tenancy, and security exposures (Engelmann et al., 2009; Hursey et al., 2007). More recent

literature highlights a shift from purely reactive schemes—where systems respond after failure—to proactive

and predictive strategies that attempt to avoid failure impact through forecasting and preemptive actions

(Engelmann et al., 2009). Parallel to these algorithmic advances has been growing interest in anti-fragile or

resilience-by-design approaches for cloud infrastructures that accept faults as drivers of systemic robustness,

rather than anomalies to be masked (Abid et al., 2014).

While the breadth of techniques is substantial, numerous research gaps and practical tensions remain. First,

there is a persistent trade-off among recovery overhead, performance, and complexity: system-level

checkpointing can be transparent but expensive; application-level checkpointing may be efficient but intrusive

to developers (Duell et al., 2002; Silva & Silva, 1998). Second, predictive techniques require trustworthy

telemetry and models; however, the heterogeneity and scale of cloud telemetry complicate prediction and can

introduce false positives that degrade performance if acted upon prematurely (Engelmann et al., 2009). Third,

security and privacy concerns add a further dimension—especially in multi-cloud scenarios where privacy-

preserving redundancy must be balanced against cost and latency (Tebaa & El Hajji, 2014; Gupta & Gupta,

2018).

The literature base assembled for this synthesis spans early checkpoint/restart foundations (Litzkow &

Solomon, 1992; Duell et al., 2002), advances in MPI-level fault tolerance (Hursey et al., 2007; Luckow &

Schnor, 2008), proactive migration paradigms (Engelmann et al., 2009), priority-driven cooperative

scheduling for clouds (Hasan & Goraya, 2016), anti-fragility concepts for cloud infrastructure (Abid et al.,

2014), and domain-specific analyses for GPU test infrastructures (Designing Fault-Tolerant Test

Infrastructure, 2025). This article aims to synthesize these sources into a comprehensive treatise: establishing

a taxonomy of faults and tolerance strategies; analyzing mechanisms, trade-offs, and implementation

considerations; and proposing an integrative framework that practitioners can operationalize.

METHODOLOGY

This study adopts a theoretical and integrative methodology grounded in systematic literature synthesis. The

objective is not an empirical experiment but an exhaustive reconstruction and expansion of mechanisms, trade-

offs, and design patterns from the provided reference corpus. The methodological steps are as follows:

Literature scoping and selection. The corpus includes canonical works on checkpointing and migration

(Litzkow & Solomon, 1992; Duell et al., 2002; Roman, 2002), MPI and grid-oriented fault tolerance (Hursey

et al., 2007; Luckow & Schnor, 2008), proactive fault tolerance strategies (Engelmann et al., 2009), application

of machine learning to fault tolerance in clouds (Kochhar & Hilda, 2017), scheduling and task backfilling in

cluster and cloud environments (Lin et al., 2010; Hasan & Goraya, 2016), privacy and multi-cloud fault

tolerance (Tebaa & El Hajji, 2014), and contemporary considerations for GPU manufacturing testbeds

(Designing Fault-Tolerant Test Infrastructure, 2025). Each reference was examined for its conceptual

contributions, assumptions, system models, and empirical observations.

Taxonomy construction. Based on the surveyed works, a structured taxonomy of faults (transient vs.

permanent, performance degradation vs. crash, hardware vs. software vs. network vs. security) and

http://www.ijmrd.in/index.php/imjrd/

335 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

corresponding tolerance strategies (masking, detection and recovery, proactive avoidance, anti-fragile design)

was developed. Taxonomy design adhered to established principles of classification—mutual exclusivity and

collective exhaustiveness—to ensure clarity for subsequent analytical mapping.

Mechanism deconstruction. Core mechanisms—checkpointing variants (system- versus application-level),

replication (active and passive), migration (reactive and proactive), scheduling (priority-based, divisible load

scheduling, backfilling), and predictive fault detection—were deconstructed into their component steps,

overhead sources, and failure modes. This deconstruction emphasized causal chains: what events trigger a

mechanism, what state is required for the mechanism to succeed, and what residual risks remain.

Comparative trade-off analysis. We conducted a qualitative comparative analysis that weighted key

performance dimensions: recovery latency, runtime overhead in failure-free operation, implementation

complexity, portability, and security/privacy implications. Each mechanism was compared against the

dimensions using evidence and claims from the literature.

Synthesis and framework development. Drawing on the comparative analysis, a layered, adaptive framework

for resilience was proposed. The framework integrates proactive prediction, hybrid checkpointing, migration

policies, and cloud-native architectural choices—including multi-cloud redundancy and anti-fragility

practices—into a prescriptive roadmap for system architects and researchers.

Throughout this methodology, claims and design choices were grounded and cross-referenced to the provided

literature to maintain strict fidelity to the input references. Where literature provided empirical measurements

or case studies, those findings informed the comparative analysis (Hursey et al., 2007; Engelmann et al., 2009).

Where gaps existed—such as the operationalization of anti-fragility in cloud orchestration—conceptual

extrapolation was employed but clearly annotated and justified with proximate references (Abid et al., 2014).

RESULTS

Taxonomy of faults and mapping to tolerance strategies

The synthesis yields a clear taxonomy that partitions faults along two orthogonal axes: temporal persistence

(transient vs. permanent) and domain (hardware, software, network, security). Transient hardware faults—

such as soft errors induced by cosmic rays or thermal excursions—often manifest as bit flips and may self-

correct or cause sporadic misbehavior, while permanent hardware faults indicate component failure requiring

replacement or rerouting (Jhawar & Piuri, 2013). Software faults range from latent bugs to misconfigurations

and may result in repeated failures if not patched. Network faults, including congestion and path failure, affect

communication latency and reliability; security faults (e.g., cross-site scripting vulnerabilities) may

compromise confidentiality or integrity and require different remediation strategies, often at the application

level (Gupta & Gupta, 2018).

Mapping these fault types to tolerance strategies clarifies appropriate interventions. Masking techniques such

as replication are effective for service continuity under component failure but incur steady-state resource cost.

Detection and recovery tactics—checkpoint/restart and rollback recovery—are suited for both transient and

permanent faults when a consistent application state can be captured. Proactive avoidance—preemptive

migration informed by predictive models—addresses imminent failures by moving state away from at-risk

resources (Engelmann et al., 2009). Anti-fragility strategies aim to design infrastructures whose operational

exposure to faults leads to systemic learning and strengthening, for instance by exercising failover paths and

diversifying provider footprints (Abid et al., 2014).

Checkpointing spectrum: system-level vs. application-level trade-offs

The literature presents two dominant checkpointing paradigms: system-level checkpointing, which captures

the entire process state transparently to applications, and application-level checkpointing, where applications

explicitly save essential state (Duell et al., 2002; Silva & Silva, 1998). System-level approaches provide

portability and ease of deployment; however, they carry substantial overheads in snapshot size and I/O

http://www.ijmrd.in/index.php/imjrd/

336 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

bandwidth and may not capture external interactions (e.g., hardware accelerators or I/O streams) cleanly.

Applications that implement domain-specific checkpoints can reduce snapshot size and frequency by

leveraging algorithmic properties (e.g., stable intermediate representations), but they require developer effort

and careful correctness reasoning.

Empirical and theoretical work supports hybrid approaches that blend the two paradigms: use coarse-grained

system-level checkpoints for baseline resilience while encouraging application-level checkpoints for

performance-critical components, particularly those with large, compressible state or non-deterministic I/O

interactions (Duell et al., 2002; Hursey et al., 2007). For MPI applications, specifically, integrating

checkpoint/restart at the messaging middleware—such as the designs reported for Open MPI and BLCR—

enables clean coordination across distributed processes (Hursey et al., 2007; Duell et al., 2002).

Proactive migration and predictive failure handling

Proactive strategies attempt to avoid service interruptions by acting before failures occur. Engelmann and

colleagues demonstrated proactive fault tolerance using preemptive migration: by retiring tasks from hosts

predicted to fail, systems can reduce job interruptions at the cost of occasional unnecessary migrations

(Engelmann et al., 2009). The effectiveness of preemptive migration hinges on prediction accuracy; false

positives induce migration overheads and false negatives produce unmitigated failures.

Machine learning techniques have been proposed to detect anomalies and predict failures, particularly in cloud

contexts where telemetry volumes are large (Kochhar & Hilda, 2017). Yet such approaches must consider the

distribution shift, label scarcity for rare faults, and the interpretability of models to avoid opaque automated

decisions that could harm performance. Practical systems often combine lightweight heuristics with ML

models: heuristics catch coarse-grained signals (e.g., fatal error codes, thermal thresholds), while ML refines

the predictions using historical patterns of resource metrics (Engelmann et al., 2009; Kochhar & Hilda, 2017).

Scheduling and cooperative computing policies

Scheduling policies significantly influence system resilience by controlling how tasks are packed, preempted,

and migrated. Priority-based cooperative computing with task backfilling allows urgent or high-priority tasks

to be scheduled ahead of lower-priority ones without starving the latter, by opportunistically filling small time

slots created by task preemption (Hasan & Goraya, 2016). Divisible load scheduling theory—relevant in

cluster environments where workloads can be partitioned arbitrarily—enables near-optimal distribution of

tasks with predictable recovery properties (Lin et al., 2010). Integrating fault tolerance into scheduling requires

schedulers to consider not only resource availability and performance but also the reliability profiles of hosts

and the cost of preemption/migration (Hasan & Goraya, 2016; Lin et al., 2010).

Multi-cloud privacy and redundancy strategies

Multi-cloud approaches provide both privacy and fault tolerance by distributing data and computation across

independent providers, thereby reducing single-provider failure exposure and enabling privacy-preserving

encodings (Tebaa & El Hajji, 2014). However, multi-cloud strategies complicate orchestration and may

increase latency and cost. The literature advocates for selective multi-cloud deployment—keeping latency-

sensitive operations local while dispersing critical state redundantly across providers—to balance privacy and

performance constraints (Tebaa & El Hajji, 2014).

Anti-fragile infrastructure design principles

Abid et al. (2014) propose moving beyond robustness toward anti-fragility: designing systems that derive

benefit from variability and stressors. Anti-fragile cloud infrastructure principles include heterogeneity in

software stacks and hardware, automated chaos testing to exercise failover paths proactively, and feedback

loops that convert observed faults into improved configuration or topological diversity. Anti-fragility contrasts

with pure high-availability engineering by emphasizing systemic adaptation and learning rather than static

redundancy.

http://www.ijmrd.in/index.php/imjrd/

337 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

Specialized considerations for GPU manufacturing and test infrastructure

Large-scale GPU manufacturing testbeds present domain-specific fault tolerance challenges: the test process

is time-consuming, often long-running, and interacts with heterogeneous hardware. The 2025 analysis of

designing fault-tolerant test infrastructure for GPUs highlights test-infrastructure-aware checkpoint

scheduling, which aligns checkpoint boundaries with safe test states, and path migration mechanisms that

allow re-routing of test flows over interconnects such as InfiniBand (Designing Fault-Tolerant Test

Infrastructure, 2025; Vishnu et al., 2007). Techniques like automatic path migration over InfiniBand

demonstrate the utility of early experiences in handling network-induced failures by altering communication

paths transparently to applications (Vishnu et al., 2007).

Comparative evaluation of strategies: trade-offs and interactions

Qualitative comparison across mechanisms indicates that no single mechanism uniformly dominates; instead,

hybrid and layered approaches perform best across diverse failure modes. System-level checkpointing offers

simplicity but high overhead; application-level approaches reduce overhead but increase development burden

(Duell et al., 2002; Silva & Silva, 1998). Preemptive migration reduces catastrophic failures but depends on

prediction quality and incurs migration costs (Engelmann et al., 2009). Multi-cloud redundancy improves

privacy and reduces correlated failure risk but increases orchestration complexity and latency (Tebaa & El

Hajji, 2014). Anti-fragile designs introduce systematic improvement over time but require rigorous

engineering and safe failure injection capabilities (Abid et al., 2014).

Implementation considerations and operational guidelines

Several operational guidance points emerge from the synthesis:

1. Adopt a hybrid checkpointing strategy: use system-level checkpoints for coarse recovery and encourage

application-level checkpoints for large or domain-specific state to minimize snapshot sizes (Duell et al., 2002;

Hursey et al., 2007).

2. Implement multi-tiered failure detection: combine cheap heuristics (error logs, hardware counters) with

ML-enhanced predictive models, while incorporating human-in-the-loop oversight to manage false positives

(Engelmann et al., 2009; Kochhar & Hilda, 2017).

3. Prioritize critical workloads and design schedulers to incorporate reliability profiles and preemption costs;

use backfilling to reduce wasted resources (Hasan & Goraya, 2016; Lin et al., 2010).

4. Use selective multi-cloud redundancy for sensitive data and critical services; design privacy-preserving

encodings and distribute checkpoints across providers where appropriate (Tebaa & El Hajji, 2014).

5. Invest in anti-fragility practices: exercise failover paths via controlled chaos testing and use fault

observability to inform architectural diversification (Abid et al., 2014).

6. For specialized infrastructures like GPU testbeds, integrate communication-path migration and test-aware

checkpointing to minimize testcase reruns and reduce costly hardware rework (Designing Fault-Tolerant Test

Infrastructure, 2025; Vishnu et al., 2007).

DISCUSSION

Interpretation of major findings

The literature synthesised herein converges on a central insight: resilience in distributed systems is best

achieved through a layered integration of strategies that compensate for each other's limitations.

Checkpoint/restart ensures stateful recovery; replication masks hardware failures; migration and scheduling

reduce exposure to impending faults; and anti-fragility brings systemic learning for long-term robustness.

http://www.ijmrd.in/index.php/imjrd/

338 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

Each strategy maps to distinct dimensions in a multidimensional optimization space—latency, overhead,

complexity, and security—and the architect's role is to navigate these trade-offs for a given operational profile

(Litzkow & Solomon, 1992; Engelmann et al., 2009; Abid et al., 2014).

Hybrid checkpointing emerges as a practical linchpin. System-level checkpoints provide a universal safety

net, enabling recovery from catastrophic failures without developer intervention (Duell et al., 2002; Roman,

2002). Application-level checkpoints, however, can exploit domain semantics to drastically reduce checkpoint

frequency and state size. For long-running scientific or GPU test workloads, this reduction is critical:

checkpoints aligned with algorithmic invariants or testing safe points decrease I/O loads and recovery

durations (Designing Fault-Tolerant Test Infrastructure, 2025; Vishnu et al., 2007).

Proactive migration and prediction must be deployed conservatively. Engelmann et al.'s demonstration that

preemptive migration reduces failures is persuasive, yet the economics of erroneous migrations cannot be

ignored (Engelmann et al., 2009). Practitioners should adopt tiered prediction confidence thresholds: high-

confidence predictions trigger immediate migration; medium-confidence ones trigger increased monitoring

and a partial checkpoint; and low-confidence signals result in no action. This tiered policy reduces

performance loss while retaining the benefits of proactive avoidance.

Anti-fragility provides a compelling philosophical shift but requires careful operationalization. Introducing

controlled failure through chaos engineering creates stress tests that exercise latent vulnerabilities and reveal

brittle dependencies (Abid et al., 2014). However, the practice must be bounded to avoid endangering

production services. A best practice is to begin with non-critical services and scale chaos experiments

gradually, combined with metrics that capture both incident impact and long-term improvements in resilience.

Limitations of the synthesis

This article's synthesis is constrained by the scope of the provided references, which, while spanning

foundational checkpointing, MPI fault tolerance, proactive migration, and cloud-level resilience, do not

include exhaustive empirical evaluations across the entire design space. Quantitative comparison—measuring

mean time to failure, recovery time objective, or resource utilization under different strategies—would require

controlled experiments or trace-driven simulation data not present in the referenced corpus (Hursey et al.,

2007; Engelmann et al., 2009). Furthermore, machine learning for prediction requires extensive labeled

telemetry to achieve low false-positive rates; the existing literature suggests potential but lacks large-scale

deployed results within the provided references (Kochhar & Hilda, 2017).

Another limitation is the rapidly changing nature of cloud platforms and hardware accelerators. While the

provided 2025 study on GPU test infrastructures offers contemporary insights, ongoing technological shifts—

such as new interconnects, virtualization features, and edge-cloud paradigms—may alter mechanism

effectiveness. Thus, the practical applicability of specific parameter choices (e.g., checkpoint intervals,

migration thresholds) should be validated per deployment context.

Future research directions

Several promising avenues for research arise naturally from the synthesis:

Portable, standardized checkpoint formats. Interoperable checkpoint formats that capture accelerator state and

metadata would reduce fragmentation and enable portable recovery across diverse runtimes. Research should

target compact, extensible, and verifiable checkpoint representations that support encryption for multi-cloud

deployments.

Explainable predictive models for failure. Developing interpretable ML models that provide actionable failure

explanations will help operators trust and calibrate proactive migration policies. Techniques combining causal

inference, survival analysis, and explainability constraints warrant exploration.

Formalizing anti-fragility metrics. To operationalize anti-fragility, research must define quantitative metrics

http://www.ijmrd.in/index.php/imjrd/

339 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

that capture systemic improvement resulting from failure exposure, such as reduction in incident recurrence

or increased diversity in failure modes. Controlled longitudinal studies will be required.

Integration patterns for test infrastructures. For GPU manufacturing and other hardware testbeds, design

patterns that integrate test sequencing logic, checkpoint alignment, and path migration merit rigorous

exploration. Such patterns should be validated on production-scale testbeds to measure savings in test reruns

and device rework.

Security-aware fault tolerance. Fault tolerance mechanisms that also account for security threats—ensuring

that replication, migration, and checkpoints do not leak sensitive data—are critical. Research into encrypted

checkpointing and secure migration channels with minimal performance penalty is needed (Tebaa & El Hajji,

2014; Gupta & Gupta, 2018).

Policy and economic analyses. The economic trade-offs of redundancy and multi-cloud strategies deserve

formal analysis, particularly under real-world cost models for cloud providers. Such analyses would help

operators determine when privacy and reliability gains justify increased expense.

CONCLUSION

Resilience in modern distributed computing systems is an inherently multidimensional engineering challenge.

This synthesis of foundational and contemporary literature demonstrates that robust, practical fault tolerance

requires hybrid and adaptive strategies that combine checkpointing, migration, intelligent scheduling,

redundancy, and anti-fragility practices. System-level checkpointing ensures baseline recoverability,

application-level checkpointing minimizes overhead, and proactive migration reduces unplanned interruptions

when prediction confidence is high. Privacy-preserving multi-cloud strategies and anti-fragile design

principles further strengthen systemic robustness, while domain-specific adaptations—particularly for GPU

manufacturing test infrastructures—deliver tangible operational benefits.

The path forward rests on integrating explainable predictive models, standardizing checkpoint formats, and

formalizing anti-fragility metrics. System designers should adopt layered resilience that balances steady-state

overhead against recovery guarantees and should use controlled failure injection to iteratively improve system

robustness. By synthesizing these approaches, architects can design distributed systems that not only survive

faults but adapt and improve because of them, achieving a practical balance between performance, cost, and

availability.

REFERENCES

1. Abd Elfattah, E., Elkawkagy, M., El Sisi, A. A Reactive Fault Tolerance Approach for Cloud

Computing. In: Proceedings of 13th International IEEE Computer Engineering Conference

(ICENCO'17), 2017, pp. 190-194.

2. Hasan, M., Goraya, M. S. Priority Based Cooperative Computing in Cloud Using Task Backfilling.

Lecture Notes in Software Engineering, Vol. 4, 2016, pp. 229-233.

http://dx.doi.org/10.18178/nse.2016.4.3.255

3. Kochhar, D., Hilda, A. K. J. An Approach for Fault Tolerance in Cloud Computing Using Machine

Learning Technique. International Journal of Pure and Applied Mathematics, Vol. 117, 2017, No. 22,

pp. 345-351.

4. Gupta, S., Gupta, B. B. XSS-Secure as a Service for the Platforms of Online Social Network-Based

Multimedia Web Applications in the Cloud. Multimedia Tools and Applications, Vol. 77, 2018, No.

4, pp. 4829-4861.

5. Tebaa, M., El Hajji, S. From Single to Multi-Clouds Computing Privacy and Fault Tolerance. In:

Proceedings of International Conference on Future Information Engineering, Elsevier B. V., 2014, pp.

http://www.ijmrd.in/index.php/imjrd/

340 https://www.ijmrd.in/index.php/imjrd/

INTERNATIONAL MULTI DISCIPLINARY JOURNAL FOR RESEARCH & DEVELOPMENT

112-118. http://dx.doi.org/10.1016/j.ieri.2014.09.099

6. Abid, A., Khemakhem, M. T., Marzouk, S., Bem Jemaa, M., Monteil, T., Drira, K. Toward Anti-

Fragile Cloud Computing Infrastructures. Procedia Computer Science, Vol. 32, 2014, pp. 850-855.

http://dx.doi.org/10.1016/j.procs.2014.05.501

7. Lin, X., Mamat, A., Lu, Y., Deogun, J., Goddard, S. Real-Time Scheduling of Divisible Loads in

Cluster Computing Environments. Parallel and Distributed Computing, Vol. 70, 2010, pp. 296-308.

http://dx.doi.org/10.1016/j.jpdc.2009.11.009

8. Jhawar, R., Piuri, V. Fault Tolerance and Resilience in Cloud Computing Environments. In: J. Vacca,

Ed. Computer and Information Security Handbook. 2013, pp. 1-29.

http://dx.doi.org/10.1109/CLOUD.2011.16

9. Sun, D., Chang, G., Miao, C., Wang, X. Modelling and Evaluating a High Serviceability Fault

Tolerance Strategy in Cloud Computing Environments. International Journal of Security and

Networks, Vol. 7, 2012, pp. 196-210. http://dx.doi.org/10.1504/IJSN.2012.053458

10. Vishnu, A. R. Mamidala, S. Narravula, D. K. Panda. Automatic Path Migration over InfiniBand: Early

Experiences. In Proceedings of IPDPS, 2007.

11. Designing Fault-Tolerant Test Infrastructure for Large-Scale GPU Manufacturing. International

Journal of Signal Processing, Embedded Systems and VLSI Design, 2025, 5(01), 35-61.

https://doi.org/10.55640/ijvsli-05-01-04

12. C. Engelmann, G. Vallee, T. Naughton, S. L. Scott. Proactive Fault Tolerance using Preemptive

Migration. In Proceedings of PDP, 2009.

13. M. Litzkow, M. Solomon. Checkpointing and Migration of UNIX Processes in the Condor Distributed

Processing System, 1992.

14. J. Duell, P. Hargrove, E. Roman. The Design and Implementation of Berkeley Lab's Linux

Checkpoint/Restart. Technical Report LBNL-54941, 2002. Available at

https://ftg.lbl.gov/CheckpointRestart/Pubs/blcr.pdf.

15. E. Roman. A Survey of Checkpoint/Restart Implementations. Technical Report LBNL-54942,

Lawrence Berkeley National Laboratory, 2002. Available at

https://ftg.lbl.gov/CheckpointRestart/CheckpointPapers.shtml.

16. J. G. Silva, L. M. Silva. System-level versus user-defined checkpointing. In SRDS, 1998.

17. Luckow, B. Schnor. Migol: A Fault-Tolerant Service Framework for MPI Applications in the Grid.

Journal of Future Generation Computer Systems, Volume 24, 2008, pages 142–152.

18. J. Hursey, J. Squyres, T. Mattox, A. Lumsdaine. The Design and Implementation of

Checkpoint/Restart Process Fault Tolerance for Open MPI. In Proceedings of IPDPS, 2007.

19. R. Subramaniyan, V. Aggarwal, A. Jacobs, A. George. FEMPI: A Lightweight Fault-Tolerant MPI

for Embedded Cluster Systems. In Proceedings of ESA, 2006.

http://www.ijmrd.in/index.php/imjrd/

