RELATIONSHIPS BETWEEN INVERSE TRIGONOMETRIC FUNCTIONS

Abstract
The relationships between inverse trigonometric functions are a fundamental aspect of mathematics, playing a crucial role in various branches of calculus, geometry, and engineering. These functions, also known as arc functions, are the inverses of the basic trigonometric functions, namely sine, cosine, and tangent. In this article, we will delve into the intricacies of these relationships, exploring their definitions, properties, and applications.
Keywords
Trigonometric functions, interval, definitions, inverse trigonometric functions.
References
- Beach, Frederick Converse; Rines, George Edwin, eds. (1912). "Inverse trigonometric functions". The Americana: a universal reference library. Vol. 21.
- Cook, John D. (11 February 2021). "Trig functions across programming languages". johndcook.com (blog). Retrieved 10 March 2021.
- Cajori, Florian (1919). A History of Mathematics (2 ed.). New York, NY: The Macmillan Company. p. 272.
- Herschel, John Frederick William (1813). "On a remarkable Application of Cotes's Theorem". Philosophical Transactions. 103 (1). Royal Society, London: 8. doi:10.1098/rstl.1813.0005.
- "Inverse trigonometric functions". Wiki. Brilliant Math & Science (brilliant.org). Retrieved 29 August 2020.
- Korn, Grandino Arthur; Korn, Theresa M. (2000) [1961]. "21.2.-4. Inverse Trigonometric Functions". Mathematical handbook for scientists and engineers: Definitions, theorems, and formulars for reference and review (3 ed.). Mineola, New York, USA: Dover Publications, Inc. p. 811. ISBN 978-0-486-41147-7.
- Bhatti, Sanaullah; Nawab-ud-Din; Ahmed, Bashir; Yousuf, S. M.; Taheem, Allah Bukhsh (1999). "Differentiation of Trigonometric, Logarithmic and Exponential Functions". In Ellahi, Mohammad Maqbool; Dar, Karamat Hussain; Hussain, Faheem (eds.). Calculus and Analytic Geometry (1 ed.). Lahore: Punjab Textbook Board. p. 140.
Downloads
Download data is not yet available.