Skip to main navigation menu Skip to main content Skip to site footer

FLOW SEPARATION SUPPRESSION ON AERODYNAMIC SURFACES USING PLASMA ACTUATORS: NUMERICAL AND EXPERIMENTAL ANALYSIS

Abstract

Flow separation on aerodynamic surfaces significantly degrades aerodynamic performance by increasing drag and reducing lift. Active flow control techniques have therefore gained considerable attention as effective solutions for separation suppression. Among these techniques, dielectric barrier discharge (DBD) plasma actuators offer distinct advantages due to their fast response, low power consumption, and absence of moving parts.

This study presents a combined numerical and experimental investigation of flow separation control on an aerodynamic surface using plasma actuators. Numerical simulations are performed using Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES) approaches to capture both mean flow characteristics and unsteady flow structures. Experimental validation is conducted in a low-speed wind tunnel using Particle Image Velocimetry (PIV) to obtain detailed velocity fields.

The numerical results show good agreement with PIV measurements in terms of velocity distribution and separation point location. The application of plasma actuation leads to a noticeable delay in flow separation and a reduction in the drag coefficient. The findings confirm the effectiveness of plasma actuators as an active flow control strategy and demonstrate the importance of coupling CFD simulations with experimental verification for accurate flow prediction.

Keywords

Plasma actuator; Flow separation control; Boundary layer; RANS; LES; Particle Image Velocimetry; Drag reduction

PDF

References

  1. Corke, T. C., Enloe, C. L., & Wilkinson, S. P. (2010). Dielectric barrier discharge plasma actuators for flow control. Annual Review of Fluid Mechanics, 42, 505–529. https://doi.org/10.1146/annurev-fluid-121108-145550
  2. Corke, T. C., Post, M. L., & Orlov, D. M. (2007). SDBD plasma enhanced aerodynamics: Concepts, optimization and applications. Progress in Aerospace Sciences, 43(7–8), 193–217. https://doi.org/10.1016/j.paerosci.2007.06.001
  3. Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J., & Corke, T. C. (2004). Mechanisms and responses of a single dielectric barrier plasma actuator: Geometric effects. AIAA Journal, 42(3), 595–604. https://doi.org/10.2514/1.2384
  4. Jukes, T. N., & Choi, K. S. (2013). Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Physics of Fluids, 25(2), 025105. https://doi.org/10.1063/1.4791097
  5. Suzen, Y. B., & Huang, P. G. (2005). Simulations of flow separation control using plasma actuators. AIAA Journal, 43(2), 334–345.
  6. https://doi.org/10.2514/1.11588
  7. Suzen, Y. B., Huang, P. G., Jacob, J. D., & Ashpis, D. E. (2005). Numerical simulations of plasma based flow control applications. AIAA Paper 2005-4633.
  8. Thomas, F. O., Kozlov, A., & Corke, T. C. (2008). Plasma actuators for cylinder flow control and noise reduction. AIAA Journal, 46(8), 1921–1931.
  9. https://doi.org/10.2514/1.33975
  10. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605.
  11. https://doi.org/10.2514/3.12149
  12. Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20(3), 181–195.
  13. https://doi.org/10.1007/s00162-006-0015-0
  14. Pope, S. B. (2000). Turbulent flows. Cambridge University Press.
  15. Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2018). Particle image velocimetry: A practical guide (3rd ed.). Springer. https://doi.org/10.1007/978-3-319-68852-7
  16. Tropea, C., Yarin, A. L., & Foss, J. F. (Eds.). (2007). Springer handbook of experimental fluid mechanics. Springer.
  17. https://doi.org/10.1007/978-3-540-30299-5
  18. Moreau, E. (2007). Airflow control by non-thermal plasma actuators. Journal of Physics D: Applied Physics, 40(3), 605–636.
  19. https://doi.org/10.1088/0022-3727/40/3/S01

Downloads

Download data is not yet available.