Skip to main navigation menu Skip to main content Skip to site footer

INTEGRAL EQUATION OF HAMMERSTEIN'S TYPE WITH DEGENERATE KERNEL

Abstract

In this paper the existence positive solution of the integral equation of Hammerstein type with degenerate kernel are discussed. We show how to find positive fixed points of a separable Hammerstein integral operator with a kernel to find positive solutions of a system of nonlinear algebraic equations in three unknowns.

Keywords

Cone, continuous functions, integral equation, Hammerstein's operator, fixed point, system of nonlinear algebraic equations.

DOWNLOAD PDF CERTIFICATE

References

  1. Baxter, R.J. : Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).
  2. Bleher, P.M., Ruiz, J. and Zagrebnov V.A. : On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. Journ. Statist. Phys. 79 (1995), 473-482.
  3. Botirov G.I., A model with uncountable set of spin values on a Cayley tree: phase transitions// Positivity, 2016, DOI 10.1007/s11117-016-0445-x.
  4. Botirov G.I., Gibbs measures of a model on Cayley tree fixed points of the Hammerstein's operator //Conference series, 22-23 aprel 2016, 229-231.
  5. Eshkabilov Yu.Kh, Rozikov U.A., Botirov G.I.: Phase transition for a model with uncountable set of spin values
  6. on Cayley tree. Lobachevskii Journal of Mathematics. (2013), V.34, No.3, 256-263.
  7. Eshkabilov Yu.Kh., Haydarov F.H., Rozikov U.A. : Uniqueness of Gibbs measure for models with uncountable
  8. set of spin values on a Cayley tree. Math. Phys. Anal. Geom. 16(1) (2013), 1-17.
  9. Eshkabilov Yu.Kh., Haydarov F.H., Rozikov U.A. : Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley Tree J.Stat.Phys. 147 (2012), 779-794.
  10. Eshkabilov Yu.Kh., Nodirov, Sh.D., Haydarov F.H.: Positive fixed points of quadratic operators and Gibbs Measures. Positivity. (2016), DOI: 10.1007/s11117-015-0394-9.
  11. Jahnel, B., Christof, K., Botirov, G. : Phase transition and critical value of nearest-neighbor system with uncountable local state space on Cayley tree. Math. Phys. Anal. Geom. 17 (2014) 323-331.
  12. Kotecky, R. and Shlosman, S.B. : First-order phase transition in large entropy lattice models. Commun. Math.Phys. 83 (1982), 493-515.
  13. Pigorov, S.A., Sinai, Ya.G. : Phase diagrams of classical lattice systems (Russian). Theor. and Math. Phys. 25(1975), 358-369.
  14. Pigorov, S.A., Sinai, Ya.G. : Phase diagrams of classical lattice systems. Continuation (Russian). Theor. andMath. Phys. 26 (1976), 61-76.
  15. Preston, C. : Gibbs states on countable sets (Cambridge University Press, London 1974).
  16. Rozikov, U.A. and Eshkabilov, Yu.Kh. : On models with uncountable set of spin values on a Cayley tree: Integral equations. Math. Phys. Anal. Geom. 13 (2010), 275-286.

Downloads

Download data is not yet available.