Skip to main navigation menu Skip to main content Skip to site footer

Accelerating Proton Therapy Dose Calculation: A Comprehensive Study of GPU-Based Pencil Beam and Monte Carlo Approaches for Clinical Adaptivity

Abstract

Background: The demand for fast, accurate dose calculation methods in proton therapy has spurred research into leveraging Graphics Processing Units (GPUs) for both pencil beam algorithms and full Monte Carlo simulations. This paper synthesizes methodological advances and evaluates the computational and clinical trade-offs of GPU-accelerated approaches, outlining pathways to integrate sub-second dose calculation into adaptive clinical workflows.

Methods: Building on foundational work in GPU programming and parallel computing, this study constructs a conceptual pipeline that integrates contemporary pencil beam models and GPU Monte Carlo techniques. The pipeline emphasizes runtime code generation, memory-conscious data structures, and validated physical models for proton transport and scattering. Methodological design choices are aligned with historical GPU acceleration practices and modern clinical constraints. Performance and accuracy trade-offs are analyzed qualitatively and quantitatively in relation to published benchmarks: fast pencil beam approximations (Da Silva et al., 2015; Fujimoto et al., 2011), GPU Monte Carlo platforms (Perl et al., 2012; Lee et al., 2022), and validated commissioning procedures (Azcona et al., 2023).

Results: The articulated GPU pipeline demonstrates that sub-second pencil beam computations are attainable for individual fields using a combination of double-Gaussian beam models, hierarchical memory access patterns, and optimized reduction strategies—consistent with previously reported sub-second results (Da Silva et al., 2015). When contrasted with GPU Monte Carlo methods, pencil beam techniques offer orders-of-magnitude speed advantages at the cost of limited modeling fidelity for heterogeneous media and complex scattering scenarios (Perl et al., 2012; Lee et al., 2022). GPU Monte Carlo implementations, while more computationally demanding, provide superior dosimetric fidelity that is advantageous for commissioning and adaptive replanning when clinical constraints permit longer computation windows (Paganetti et al., 2021; Azcona et al., 2023).

Discussion: We provide a deep interpretive analysis of algorithmic design, including the theoretical underpinnings of pencil beam decompositions and Monte Carlo sampling strategies, the implications of parallel hardware architectures on numerical stability and reproducibility, and the practical considerations of clinical integration—quality assurance, commissioning, and workflow compatibility. Limitations include the challenge of balancing speed, accuracy, and validation demands; potential numerical artifacts introduced by aggressive optimization; and the need for robust clinical validation across tissue heterogeneities (Schreuder et al., 2019; Goma et al., 2018). Future directions center on hybrid models that fuse fast pencil beam precomputations with targeted Monte Carlo refinement, automated commissioning pipelines, and exploitation of modern GPU programming paradigms and run-time code generation (Klöckner et al., 2012; Lulla, 2025).

Conclusions: GPU-accelerated dose calculation is mature enough to dramatically improve the feasibility of adaptive proton therapy. Through careful algorithmic design, validation, and clinical integration, facilities can realize near real-time planning for selected adaptive scenarios while retaining Monte Carlo accuracy where it matters most.

Keywords

proton therapy, GPU acceleration, pencil beam, Monte Carlo

pdf

References

  1. Larsen, E.; McAllister, D. Fast matrix multiplies using graphics hardware. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC’01, Denver, CO, USA, 10–16 November 2001. CrossRef.
  2. Owens, J.; Luebke, D.; Govindaraju, N.; Harris, M.; Krüger, J.; Lefohn, A.; Purcell, T. A Survey of General-Purpose Computation on Graphics Hardware. Comput. Graph. Forum 2007, 26, 80–113. CrossRef.
  3. Nanz, S.; Furia, C. A Comparative Study of Programming Languages in Rosetta Code. In Proceedings of the IEEE International Conference on Software Engineering, Florence, Italy, 16–24 May 2015; Volume 1, pp. 778–788. CrossRef.
  4. Klöckner, A.; Pinto, N.; Lee, Y.; Catanzaro, B.; Ivanov, P.; Fasih, A. PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput. 2012, 38, 157–174. CrossRef.
  5. Asanović, K.; Bodik, R.; Catanzaro, B.; Gebis, J.; Husbands, P.; Keutzer, K.; Patterson, D.; Plishker, W.; Shalf, J.; Williams, S.; et al. The Landscape of Parallel Computing Research: A View from Berkeley; Technical Report; EECS Department, University of California: Berkeley, CA, USA, 2006.
  6. Brodtkorb, A. Simplified Ocean Models on the GPU. Available online: https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2565319/500-Article2bText-1025-1-10-20180815.pdf?sequence=2&isAllowed=y (accessed on 7 January 2020).
  7. Holm, H.; Brodtkorb, A.; Christensen, K.; Broström, G.; Sætra, M. Evaluation of Selected Finite-Difference and Finite-Volume Approaches to Rotational Shallow-Water Flow. Commun. Comput. Phys. 2019, accepted.
  8. Hagen, T.; Henriksen, M.; Hjelmervik, J.; Lie, K.A. How to Solve Systems of Conservation Laws Numerically Using the Graphics Processor as a High-Performance Computational Engine. In Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF; Hasle, G., Lie, K.A., Quak, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 211–264. CrossRef.
  9. Brodtkorb, A.; Sætra, M.; Altinakar, M. Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation. Comput. Fluids 2012, 55, 1–12. CrossRef.
  10. Perl, J.; Shin, J.; Schümann, J.; Faddegon, B.; Paganetti, H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818‐6837. doi:10.1118/1.4758060.
  11. Lee, H.; Shin, J.; Verburg, J.M.; et al. MOQUI: an open-source GPU-based Monte Carlo code for proton dose calculation with efficient data structure. Phys Med Biol. 2022;67(17):174001. doi:10.1088/1361-6560/ac8716.
  12. Soukup, M.; Fippel, M.; Alber, M. A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations. Phys Med Biol. 2005;50(21):5089‐5104. doi:10.1088/0031-9155/50/21/010.
  13. da Silva, J.; Ansorge, R.; Jena, R. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model. Front Oncol. 2015;5:281. doi:10.3389/fonc.2015.00281.
  14. Lulla, K. Python-based GPU testing pipelines: Enabling zero-failure production lines. Journal of Information Systems Engineering and Management. 2025;10:978-994.
  15. Da Silva, J.; Ansorge, R.; Jena, R. Sub‐second pencil beam dose calculation on GPU for adaptive proton therapy. Phys Med Biol. 2015;60(12):4777‐4795. doi:10.1088/0031-9155/60/12/4777.
  16. Fujimoto, R.; Kurihara, T.; Nagamine, Y. GPU-based fast pencil beam algorithm for proton therapy. Phys Med Biol. 2011;56(5):1319‐1328. doi:10.1088/0031-9155/56/5/006.
  17. Schreuder, A.N.; Bridges, D.S.; Rigsby, L.; et al. Validation of the RayStation Monte Carlo dose calculation algorithm using realistic animal tissue phantoms. J Appl Clin Med Phys. 2019;20(10):160‐171. doi:10.1002/acm2.12733.
  18. Paganetti, H.; Botas, P.; Sharp, G.C.; Winey, B. Adaptive proton therapy. Phys Med Biol. 2021;66(22):22TR01. doi:10.1088/1361-6560/ac344f.
  19. Azcona, J.D.; Aguilar, B.; Perales, Á.; et al. Commissioning of a synchrotron-based proton beam therapy system for use with a Monte Carlo treatment planning system. Radiation Physics and Chemistry. 2023;204:110708. doi:10.1016/j.radphyschem.2022.110708.
  20. Goma, C.; Almeida, I.P.; Verhaegen, F. Revisiting the single-energy CT calibration for proton therapy treatment planning: a critical look at the stoichiometric method. Phys Med Biol. 2018;63(23):235011. doi:10.1088/1361-6560/aaede5.
  21. Schneider, U.; Pedroni, E.; Lomax, A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41(1):111‐124. doi:10.1088/0031-9155/41/1/009.

Downloads

Download data is not yet available.