USE OF ARTIFICIAL INTELLIGENCE IN INTERNAL MEDICINE
Abstract
Artificial intelligence (AI) is revolutionizing medical diagnostics and patient management. Advanced imaging, automated laboratory workflows, and predictive analytics enhance diagnostic precision and clinical decision-making. AI also identifies subtle clinical signs that may be overlooked by human observation, thereby contributing to early detection and personalized treatment.
Keywords
Artificial intelligence, patient–specialist interaction, decision support systems, explainable AI, digital transformation, predictive analytics, medical imaging.
References
- Jens Eckstein. Künstliche Intelligenz in der internistischen Versorgung. Inn Med Heidelberg. 2023;17;64(11):1017-1022 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231–237. doi: 10.1136/bmjqs-2018-008370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498. doi: 10.1093/eurheartj/ehaa612. [DOI] [PubMed] [Google Scholar]
- Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394(10201):861–867. doi: 10.1016/S0140-6736(19)31721-0. [DOI] [PubMed] [Google Scholar]
- Alexandre J, Tan K, Almeida TP, Sola J, Alpert BS, Shah J. Validation of the Aktiia blood pressure cuff for clinical use according to the ANSI/AAMI/ISO 81060-2:2013 protocol. Blood Press Monit. 2023;28(2):109–112. doi: 10.1097/MBP.0000000000000639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zisser HC. The OmniPod Insulin Management System: the latest innovation in insulin pump therapy. Diabetes Ther. 2010;1(1):10–24. doi: 10.1007/s13300-010-0004-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beck RW, Riddlesworth T, Ruedy K, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA. 2017;317(4):371–378. doi: 10.1001/jama.2016.19975. [DOI] [PubMed] [Google Scholar]
- Sawhney R, Malik A, Sharma S, Narayan V. A comparative assessment of artificial intelligence models used for early prediction and evaluation of chronic kidney disease. Decis Anal J. 2023;6:100169. doi: 10.1016/j.dajour.2023.100169. [DOI] [Google Scholar]
- Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68(10):1813–1819. doi: 10.1136/gutjnl-2018-317500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2018;46(4):547–553. doi: 10.1097/CCM.0000000000002936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agrebi S, Larbi A. Artificial intelligence in precision health. 2020. Use of artificial intelligence in infectious diseases; pp. 415–438. [Google Scholar]
- Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Etienne S, Oliveras R, Schiboni G, et al. Free-living core body temperature monitoring using a wrist-worn sensor after COVID-19 booster vaccination: a pilot study. BioMed Eng OnLine. 2023;22(1):25. doi: 10.1186/s12938-023-01081-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Alvarez J, Grassi M, Colombo D, et al. Efficacy of bio- and neurofeedback for depression: a meta-analysis. Psychol Med. 2022;52(2):201–216. doi: 10.1017/S0033291721004396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kircanski K, Williams LM, Gotlib IH. Heart rate variability as a biomarker of anxious depression response to antidepressant medication. Depress Anxiety. 2019;36(1):63–71. doi: 10.1002/da.22843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXneXt algorithm to practicing radiologists. PLoS Med. 2018;15(11):e1002686. doi: 10.1371/journal.pmed.1002686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grzybowski A, Brona P, Lim G, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye (Lond) 2020;34(3):451–460. doi: 10.1038/s41433-019-0566-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
Downloads
Download data is not yet available.